A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Mathematical model of the lumpy skin disease using Caputo fractional-order derivative via invariant point technique. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aim of this paper is to study the fractional model of Lumpy Skin Disease, aiming to enhance our understanding of this disease. Specifically, we employ the recently introduced Caputo-Fabrizio fractional (CFF) derivative to analyze the Lumpy Skin Disease model in detail. To comprehensively study the model's solutions, we utilize the Picard-Lindelof approach to assess their existence and uniqueness. Furthermore, we employ numerical techniques, specifically the CFF derivative combined with the fundamental theorem of fractional calculus and fixed point theorem, to obtain the solutions of Lumpy Skin Disease in near form using fractional order. This innovative approach offers novel insights into the dynamics of the disease model that were previously unexplored. In addition, numerical simulations are conducted to explore the change in effects of control parameters on specific compartments within the model. The geometric representation of the model provides valuable insights into its complexity and reliability. By simulating each model compartment at various fractional orders and comparing them with integer-order simulations, we highlight the effectiveness of modern derivatives. Overall, our fractional analysis emphasizes the enhanced accuracy of non-integer order derivatives in capturing the dynamics of the Lumpy Skin Disease model. These findings contribute to advancing our understanding of the disease and may have implications for its control and management strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914601PMC
http://dx.doi.org/10.1038/s41598-025-92884-yDOI Listing

Publication Analysis

Top Keywords

lumpy skin
20
skin disease
20
disease model
12
model lumpy
8
disease
8
understanding disease
8
cff derivative
8
model
7
fractional
6
lumpy
5

Similar Publications