Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Population aging is an inevitable trend in contemporary society, and the application of technologies such as human-machine interaction, assistive healthcare, and robotics in daily service sectors continues to increase. The lower limb exoskeleton rehabilitation robot has great potential in areas such as enhancing human physical functions, rehabilitation training, and assisting the elderly and disabled. This paper integrates the structural characteristics of the human lower limb, motion mechanics, and gait features to design a biomimetic exoskeleton structure and proposes a human-machine integrated lower limb exoskeleton rehabilitation robot. Human gait data are collected using the Optitrack optical 3D motion capture system. SolidWorks 3D modeling software Version 2021 is used to create a virtual prototype of the exoskeleton, and kinematic analysis is performed using the standard Denavit-Hartenberg (D-H) parameter method. Kinematic simulations are carried out using the Matlab Robotic Toolbox Version R2018a with the derived D-H parameters. A physical prototype was fabricated and tested to verify the validity of the structural design and gait parameters. A controller based on BP fuzzy neural network PID control is designed to ensure the stability of human walking. By comparing two sets of simulation results, it is shown that the BP fuzzy neural network PID control outperforms the other two control methods in terms of overshoot and settling time. The specific conclusions are as follows: after multiple walking gait tests, the robot's walking process proved to be relatively safe and stable; when using BP fuzzy neural network PID control, there is no significant oscillation, with an overshoot of 5.5% and a settling time of 0.49 s, but the speed was slow, with a walking speed of approximately 0.18 m/s, a stride length of about 32 cm, and a gait cycle duration of approximately 1.8 s. The model proposed in this paper can effectively assist patients in recovering their ability to walk. However, the lower limb exoskeleton rehabilitation robot still faces challenges, such as a slow speed, large size, and heavy weight, which need to be optimized and improved in future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902395PMC
http://dx.doi.org/10.3390/s25051611DOI Listing

Publication Analysis

Top Keywords

lower limb
20
limb exoskeleton
16
exoskeleton rehabilitation
16
rehabilitation robot
16
fuzzy neural
12
neural network
12
network pid
12
pid control
12
settling time
8
exoskeleton
6

Similar Publications

Objectives: The risk of major venous thromboembolism (VTE) among patients with COVID-19 is high but varies with disease severity. Estimate the incidence of lower extremity deep venous thrombosis (DVT) in critically ill hospitalized patients with COVID-19, validate the Wells score for DVT diagnosis, and determine patients' prognosis.

Methods: This was an observational follow-up study in the context of the diagnosis and prognosis of DVT.

View Article and Find Full Text PDF

Introduction: Restless legs syndrome (RLS) is a common sensorimotor disorder that primarily affects the lower extremities. This condition is characterized by unpleasant sensations and an irresistible urge to move the affected body regions, typically during periods of rest or at night. While RLS most commonly involves the legs, atypical variants affecting other body parts, including the arms, abdomen, face, and even the head, have increasingly been reported.

View Article and Find Full Text PDF

Severe Hypoalbuminaemia after Roux-En-Y Gastric Bypass: A Diagnosis of Exclusion.

Eur J Case Rep Intern Med

August 2025

Department of Internal Medicine, Local Health Unit of São João, Porto, Portugal.

Unlabelled: Bariatric surgery has emerged as a highly effective treatment option for individuals with obesity. Severe hypoalbuminaemia is a feared complication after a Roux-en-Y gastric bypass. It is characterised by a low serum albumin level of <25 g/l, neither explained by renal losses, protein-losing enteropathy nor by liver disfunction, and is associated with high morbidity and mortality.

View Article and Find Full Text PDF

Introduction: This study examined the impacts of different negative pressure cupping therapies (PCT) on pain relief, functional recovery, and inflammatory regulation in delayed onset muscle soreness (DOMS) after high-intensity exercise, with the aim of clarifying the dose-effect relationship.

Methods: In this study, 55 healthy male participants aged 18-25 were selected and divided into 5 groups: the control group (CTR;  = 11) and NPCT groups at different levels (-25 kPa, -35 kPa, -45 kPa, and -55 kPa;  = 11 in each group). A high-intensity protocol, which included 6 sets of lunges, squats, and squat jumps, was adopted to induce DOMS in the quadriceps femoris.

View Article and Find Full Text PDF

Background: Diabetic foot ulcers (DFU) are a prevalent complication of diabetes, leading to significant morbidity, mortality, and amputation rates. Chronic non-healing DFU often result from peripheral neuropathy, microvascular issues, and infection, with poor blood and oxygen supply being critical factors in delayed healing. The development of new treatments to promote blood supply and accelerate ulcer healing is a significant area of research for DFU management.

View Article and Find Full Text PDF