Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The importance of bio-robotics has been increasing day by day. Researchers are trying to mimic nature in a more creative way so that the system can easily adapt to the complex nature and its environment. Hence, bio-robotic grippers play a role in the physical connection between the environment and the bio-robotics system. While handling the physical world using a bio-robotic gripper, complexity occurs in the feedback system, where the sensor plays a vital role. Therefore, a human-centered gripper sensor can have a good impact on the bio-robotics field. But categorical classification and the selection process are not very systematic. This review paper follows the PRISMA methodology to summarize the previous works on bio-robotic gripper sensors and their selection process. This paper discusses challenges in soft robotic systems, the importance of sensing systems in facilitating critical control mechanisms, along with their selection considerations. Furthermore, a classification of soft actuation based on grippers has been introduced. Moreover, some unique characteristics of soft robotic sensors are explored, namely compliance, flexibility, multifunctionality, sensor nature, surface properties, and material requirements. In addition, a categorization of sensors for soft robotic grippers in terms of modalities has been established, ranging from the tactile and force sensor to the slippage sensor. Various tactile sensors, ranging from piezoelectric sensing to optical sensing, are explored as they are of the utmost importance in soft grippers to effectively address the increasing requirements for intelligence and automation. Finally, taking everything into consideration, a flow diagram has been suggested for selecting sensors specific to soft robotic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902506 | PMC |
http://dx.doi.org/10.3390/s25051508 | DOI Listing |