A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Caspase 9-induced apoptosis enables efficient fetal cell ablation and disease modeling. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fetal cell ablation models are crucial for studying congenital diseases, organ regeneration, and xenotransplantation. However, conventional knockout models offer limited control over disease severity, while conditional ablation models often require fetus-harming inducers. In the present study, we demonstrate that the inducible caspase 9 system enables precise targeting of fetal nephron progenitor cells in mice through the intrinsic apoptotic pathway. Using a safe, placenta-permeable inducer, this system facilitates specific, rapid, and efficient cell ablation. The system's temporal control allows precise adjustment of disease severity, generating reproducible models ranging from congenital kidney deficiency to severe chronic kidney disease. Cells with low expression levels of inducible caspase 9 and those in solid organs are less susceptible to apoptosis. However, this limitation can be overcome by inhibiting the X-linked inhibitor of apoptosis protein, thereby expanding the system's applicability. Additionally, this model provides a developmental environment suitable for chimeric kidney regeneration. This system advances understanding of induced cell death mechanisms, enhances pathological research tools, and supports therapeutic development in kidney disease and xenotransplantation applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910536PMC
http://dx.doi.org/10.1038/s41467-025-57795-6DOI Listing

Publication Analysis

Top Keywords

cell ablation
12
fetal cell
8
ablation models
8
disease severity
8
inducible caspase
8
kidney disease
8
disease
5
caspase 9-induced
4
9-induced apoptosis
4
apoptosis enables
4

Similar Publications