Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Vapor-phase perfluoroalkyl and polyfluoroalkyl substances (PFASs), along with methane emissions from landfills has been key contributors of their atmospheric transport and global distribution. Given the persistence, bioaccumulation, and potential health risks associated with PFAS, understanding their transport behavior in landfill gas barrier is of paramount importance. To gain a deeper understanding of the adsorption and diffusion behavior of vapor-phase PFAS in unsaturated, montmorillonite-rich clay barriers, a molecular dynamics simulation was conducted. A 5-nm montmorillonite nanopore incorporating vapor-phase PFAS (Fluorotelomer alcohol, FTOH), methane, and water molecules was modeled considering the interactions between these species. The results indicate that the presence of methane within the montmorillonite system inhibits the diffusion of both water and FTOH. Additionally, methane competes with FTOH for sorption sites, particularly at low moisture content. At 5 % moisture content, the adsorption density peak of methane is 1.5 times greater than that of FTOH due to stronger van der Waals interactions between methane and montmorillonite. However, as moisture content increases, methane adsorption weakens and becomes more dispersed within the montmorillonite pores. In contrast, FTOH retains a distinct adsorption region at 20 % moisture content, exhibiting a density peak of 0.025 g/cm that shifts farther from the montmorillonite surface. At high moisture content, FTOH aggregates due to the hydrophobicity of its C-F tail. These findings provide critical insights into the environmental behavior of volatile PFASs and have important implications for the design and optimization of landfill gas barriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2025.114746 | DOI Listing |