98%
921
2 minutes
20
Purpose: We aimed to systematically assess the value of radiomics/machine learning (ML) models for diagnosing microvascular invasion (MVI) in patients with cholangiocarcinoma (CCA) using various radiologic modalities.
Methods: A systematic search of was conducted on Web of Sciences, PubMed, Scopus, and Embase. All the studies that assessed the value of radiomics models or ML models along with the use of imaging features were included. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria and METhodological RadiomICs Score (METRICS) were used for quality assessment. Pooled estimates for the diagnostic performance of radiomics/ML models were calculated. I-squared was used to assess heterogeneity, and sensitivity and subgroup analyses were performed to find the sources of heterogeneity. Deeks' funnel plots were used to assess publication bias.
Results: 11 studies were included in the systematic review with only one study being about extrahepatic CCA. According to the METRICS, the mean score was 62.99 %. Meta-analyses were performed on intrahepatic CCA studies. The meta-analysis of the best ML models revealed an AUC of 0.93 in the training cohort and an AUC of 0.85 in the validation cohort. Regarding the best radiomics model, the AUC was 0.85 in the training cohort and 0.81 in the validation cohort.
Conclusion: Radiomics/ML models showed very good diagnostic performance regarding MVI diagnosis in patients with intrahepatic CCA and may provide a non-invasive method for this purpose. However, given the high heterogeneity and low number of the included studies, further multi-center studies with prospective design and robust external validation are essential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinimag.2025.110456 | DOI Listing |
Knee Surg Relat Res
September 2025
Florida Orthopaedic Institute, Gainesville, FL, 32607, USA.
Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.
View Article and Find Full Text PDFGeroscience
September 2025
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.
View Article and Find Full Text PDFBariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.
View Article and Find Full Text PDFOral Radiol
September 2025
Department of Oral and Maxillofacial Radiology, Eskisehir Osmangazi University, Meşelik Campus, Büyükdere Neighborhood, Prof. Dr. Nabi Avcı Boulevard No:4, Odunpazarı, Eskişehir, 26040, Turkey.
Objectives: The primary objective of this study is to evaluate the effectiveness of artificial intelligence-assisted segmentation methods in detecting carotid artery calcification (CAC) in panoramic radiographs and to compare the performance of different YOLO models: YOLOv5x-seg, YOLOv8x-seg, and YOLOv11x-seg. Additionally, the study aims to investigate the association between patient gender and the presence of CAC, as part of a broader epidemiological analysis.
Methods: In this study, 30,883 panoramic radiographs were scanned.