Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Intracranial aneurysm rupture is associated with high mortality and disability rates. Early detection is crucial, but increasing diagnostic workloads place significant strain on radiologists. We evaluated the efficacy of a deep learning algorithm in detecting unruptured intracranial aneurysms (UIAs) using time-of-flight (TOF) magnetic resonance angiography (MRA).

Methods: Data from 675 participants (189 aneurysm-positive [221 UIAs] and 486 aneurysm-negative) were collected from 2 hospitals (2019-2023). Positive cases were confirmed by digital subtraction angiography, and images were annotated by vascular experts. The 3D U-Net-based model was trained on 988 nonoverlapped TOF MRA datasets and evaluated by patient- and lesion-level sensitivity, specificity, and false-positive rates.

Results: The mean age was 59.6 years (standard deviation 11.3), and 52.0% were female. The model achieved patient-level sensitivity of 95.2% and specificity of 80.5%, with lesion-level sensitivity of 89.6% and a false-positive rate of 0.19 per patient. Sensitivity by aneurysm size was 72.3% for lesions <3 mm, 91.8% for 3-5 mm, and 94.3% for >5 mm. Performance was consistent across institutions, with an area under the receiver operating characteristic curve of 0.949.

Conclusions: The software demonstrated high sensitivity and low false-positive rates for UIA detection in TOF MRA, suggesting its utility in reducing diagnostic errors and alleviating radiologist workload. Expert review remains essential, particularly for small or complex aneurysms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2025.123882DOI Listing

Publication Analysis

Top Keywords

deep learning
8
learning algorithm
8
algorithm detecting
8
detecting unruptured
8
unruptured intracranial
8
intracranial aneurysms
8
magnetic resonance
8
resonance angiography
8
tof mra
8
lesion-level sensitivity
8

Similar Publications

Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).

View Article and Find Full Text PDF

Machine learning (ML) and deep learning (DL) methodologies have significantly advanced drug discovery and design in several aspects. Additionally, the integration of structure-based data has proven to successfully support and improve the models' predictions. Indeed, we previously demonstrated that combining molecular dynamics (MD)-derived descriptors with ML models allows to effectively classify kinase ligands as allosteric or orthosteric.

View Article and Find Full Text PDF

In recent AI-driven disease diagnosis, the success of models has depended mainly on extensive data sets and advanced algorithms. However, creating traditional data sets for rare or emerging diseases presents significant challenges. To address this issue, this study introduces a direct-self-attention Wasserstein generative adversarial network (DSAWGAN) designed to improve diagnostic capabilities in infectious diseases with limited data availability.

View Article and Find Full Text PDF

Few-shot learning for highly accelerated 3D time-of-flight MRA reconstruction.

Magn Reson Med

September 2025

Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

Purpose: To develop a deep learning-based reconstruction method for highly accelerated 3D time-of-flight MRA (TOF-MRA) that achieves high-quality reconstruction with robust generalization using extremely limited acquired raw data, addressing the challenge of time-consuming acquisition of high-resolution, whole-head angiograms.

Methods: A novel few-shot learning-based reconstruction framework is proposed, featuring a 3D variational network specifically designed for 3D TOF-MRA that is pre-trained on simulated complex-valued, multi-coil raw k-space datasets synthesized from diverse open-source magnitude images and fine-tuned using only two single-slab experimentally acquired datasets. The proposed approach was evaluated against existing methods on acquired retrospectively undersampled in vivo k-space data from five healthy volunteers and on prospectively undersampled data from two additional subjects.

View Article and Find Full Text PDF

Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.

View Article and Find Full Text PDF