98%
921
2 minutes
20
People with unilateral transfemoral amputation commonly experience pain at the residual limb-socket interface and heightened risk of musculoskeletal overuse injuries. Compensatory movement patterns acutely alleviate pain but can contribute to chronic aberrant muscle function and joint loading. Bone-anchored limbs have been shown to normalize joint loading during walking compared to socket prostheses, but their effects on muscle forces are not well understood. In this study, we compared dynamic hip muscle forces in all three planes of motion during walking before and after transfemoral bone-anchored limb implantation. Overground walking motion capture data were collected from 19 participants before (in socket prosthesis) and 12 months following bone-anchored limb implantation. Bilateral hip muscle forces were estimated during stance using subject-specific musculoskeletal models, resolved into anteroposterior, mediolateral, and superoinferior components, and compared across timepoints. After bone-anchored limb implantation, amputated-side hip abductor muscle forces were increased throughout stance (p ≤ 0.048), suggesting greater force-generating capacity of hip-spanning muscles during walking. Amputated-side hip flexor posterior muscle forces were decreased following implantation during terminal stance (p < 0.001), which may contribute to reduced anterior hip joint loading in pre-swing observed in bone-anchored limb users. Hip abductor muscle forces were more symmetric during single limb support (p < 0.034) and flexor muscle forces were more asymmetric during terminal stance (p = 0.047) following bone-anchored limb implantation. This study provides new insights of how bone-anchored limbs influence hip muscle function during walking, with implications for hip osteoarthritis development and progression in this population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992626 | PMC |
http://dx.doi.org/10.1016/j.jbiomech.2025.112620 | DOI Listing |
J Strength Cond Res
September 2025
Institute for Data Analysis and Process Design, ZHAW, Zurich, Switzerland; and.
Achermann, BB, Drewek, A, and Lorenzetti, SR. Acute effect of the bounce squat on ground reaction force at the turning point and barbell kinematics. J Strength Cond Res XX(X): 000-000, 2025-The free-weight back squat is a key exercise for developing lower-body strength, with variations that influence muscle activation and performance.
View Article and Find Full Text PDFJ Oral Rehabil
September 2025
Center for Advanced Oral Medicine, Hokkaido University Hospital, Sapporo, Japan.
Background: It has not been established how electromyographic (EMG) data of masticatory muscles can estimate bite force (BF) during daily activities at home, such as eating and bruxism, utilising the EMG-BF correlation.
Objective: This study aimed to investigate the relationship between actual BF and BF estimated using corresponding EMG data and additional information on BF and EMG measured on a separate day.
Methods: Participants were 16 volunteers.
Knee Surg Sports Traumatol Arthrosc
September 2025
University Clinic for Orthopedic Surgery and Traumatology, Kantonsspital Baselland, Bruderholz, Switzerland.
Kinematic alignment is increasingly adopted in total knee arthroplasty (TKA) as a patient-specific strategy to restore native joint anatomy. However, its reliance on static radiographic measurements may not adequately reflect real-world functional biomechanics. This editorial underscores the importance of complementing static assessment with kinetic principles.
View Article and Find Full Text PDFTrauma Surg Acute Care Open
September 2025
CRT 4, US Army Institute of Surgical Research Burn Center, Fort Sam Houston, Texas, USA.
Acute extremity compartment syndrome (CS) is a serious medical complication triggered by factors such as trauma, vascular injury, or prolonged compression, resulting in elevated intracompartmental pressure (ICP) and tissue ischemia. Diagnosis remains challenging, mainly relying on the subjective evaluation of clinical symptoms. Different animal models have been used to study pathophysiology and evaluate diagnostic and therapeutic approaches.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
The triceps surae performs vital functions during locomotion and possesses shock-absorbing capacity. The injury rate of the Achilles tendon is higher in males than females. Quantification of the triceps surae muscle force outputs across sexes has not been determined.
View Article and Find Full Text PDF