Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present an extended Lagrangian shadow molecular dynamics scheme with an interatomic Born-Oppenheimer potential determined by the relaxed atomic charges of a second-order charge equilibration model. To parametrize the charge equilibration model, we use machine learning with neural networks to determine the environment-dependent electronegativities and chemical hardness parameters for each atom, in addition to the charge-independent energy and force terms. The approximate shadow molecular dynamics potential in combination with the extended Lagrangian formulation improves the numerical stability and reduces the number of Coulomb potential calculations required to evaluate accurate conservative forces. We demonstrate efficient and accurate simulations with excellent long-term stability of the molecular dynamics trajectories. The significance of choosing fixed or environment-dependent electronegativities and chemical hardness parameters is evaluated. Finally, we compute the infrared spectrum of molecules via the dipole autocorrelation function and compare to experiments to highlight the accuracy of the shadow molecular dynamics scheme with a machine learned flexible charge potential.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.5c00062DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
20
shadow molecular
16
machine learned
8
learned flexible
8
flexible charge
8
charge potential
8
extended lagrangian
8
dynamics scheme
8
charge equilibration
8
equilibration model
8

Similar Publications

Transcription initiation factor TFIID subunit 1 (TAF1) is a pivotal component of the TFIID complex, critical for RNA polymerase II-mediated transcription initiation. However, the molecular basis by which TAF1 recognizes and associates with chromatin remains incompletely understood. Here, we report that the tandem bromodomain module of TAF1 engages nucleosomal DNA through a distinct positively charged surface patch on the first bromodomain (BD1).

View Article and Find Full Text PDF

African swine fever (ASF) is a contagious viral disease that affects domestic pigs and Eurasian wild boars, causing significant economic losses to the global pig industry. Since its first outbreak in February 2019, ASF has had a profound impact on the Vietnamese pig sector. This review presents a comprehensive analysis of ASF outbreaks in Vietnam from 2019 to 2024, focusing on outbreak dynamics, control strategies, economic impact, and key lessons learned.

View Article and Find Full Text PDF

Cyclin-dependent kinase 20 (CDK20), also known as cell cycle-related kinase (CCRK), plays a pivotal role in hepatocellular carcinoma (HCC) progression by regulating β-catenin signaling and promoting uncontrolled proliferation. Despite its emerging significance, selective small-molecule inhibitors of CDK20 remain unexplored. In this study, a known CDK20 inhibitor, ISM042-2-048, was employed as a reference to retrieve structurally similar compounds from the PubChem database using an 85% similarity threshold.

View Article and Find Full Text PDF

Design and synthesis of novel indolinone Aurora B kinase inhibitors based on fragment-based drug discovery (FBDD).

Mol Divers

September 2025

State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.

Aurora kinases are a group of serine/threonine kinases essential for cell mitosis, comprising Aurora A, B, and C. However, the Aurora B is overexpressed in multiple tumors and the aurone has been proved to exhibit potent inhibitory activity against Aurora B kinase by our group. The indolinone was considered as an aurone scaffold hopping analog, and the indolinone-based Aurora B inhibitor library (3577 molecules) was constructed by FBDD strategy.

View Article and Find Full Text PDF

A fundamental question in the field of molecular computation is what computational tasks a biochemical system can carry out. In this work, we focus on the problem of finding the maximum likelihood estimate (MLE) for log-affine models. We revisit a construction due to Gopalkrishnan of a mass-action system with the MLE as its unique positive steady state, which is based on choosing a basis for the kernel of the design matrix of the model.

View Article and Find Full Text PDF