Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
modeling of vascular diseases provides a useful platform for drug screening and mechanistic studies, by recapitulating the essential structures and physiological characteristics of the native tissue. Bioprinting is an emerging technique that offers high-resolution 3D capabilities, which have recently been employed in the modeling of various tissues and associated diseases. Blood vessels are composed of multiple layers of distinct cell types, and experience different mechanical conditions depending on the vessel type. The intimal layer, in particular, is directly exposed to such hemodynamic conditions inducing shear stress, which in turn influence vascular physiology. 3D bioprinting techniques have addressed the structural limitations of the previous vascular models, by incorporating supporting cells such as smooth muscle cells, geometrical properties such as dilation, curvature, or branching, or mechanical stimulation such as shear stress and pulsatile pressure. This paper presents a review of the physiology of blood vessels along with the pathophysiology of the target diseases including atherosclerosis, thrombosis, aneurysms, and tumor angiogenesis. Additionally, it discusses recent advances in fabricating3D vascular disease models utilizing bioprinting techniques, while addressing the current challenges and future perspectives for the potential clinical translation into therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5090/adc03a | DOI Listing |