A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multienergy Codriven Electron Transfer Across the Nano-Bio Interface for Efficient Photobiocatalysis. | LitMetric

Multienergy Codriven Electron Transfer Across the Nano-Bio Interface for Efficient Photobiocatalysis.

ACS Nano

Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Integrating biocatalysis with nanophotocatalysis provides a promising pathway to address the knotty environmental and energy problems. However, energy loss during the transfer of extracellular electrons across the nano-bio interface seriously limits the efficiency of whole-cell-based photobiocatalytic systems. Herein, we demonstrate an integrated multienergy codriven reaction platform containing BaTiO nanoparticles (BTO) for harvesting mechanical energy from flowing water to elevate the interfacial electric field, BiVO quantum dots (BQD) for harvesting light energy to generate photocarriers, and () for accepting photoelectrons to accomplish the biocatalytic reactions. The synergism between the piezoelectric and photoelectric fields significantly promotes the cross-membrane transport of photoelectrons, contributing to enhanced acetate metabolism, electron transfer, and energy synthesis of microbes. Such well-designed BQD/BTO- hybrids result in the simultaneous degradation of organic contaminants and detoxification of heavy metals in water with approximately 100% treatment efficiency. The rates of tetracycline (TC) oxidation and Cr(VI) reduction are determined to be 32.8 and 9.58 times higher than that of biocatalysis, respectively. Our photobiocatalytic platform exhibits an exceptional apparent quantum yield of 15.54% at 400 nm, exceeding those of most reported abiotic-biotic photobiocatalytic systems. Further investigation verifies the extensibility of our multienergy codriven strategy to the other nano-bio hybrids for enhancing the biocatalytic efficiencies (such as methanogenesis, CO fixation, and denitrification), thus offering an inspiring platform for energy and environmental applications. This work not only presents crucial insights into the mechanism of the water-energy nexus but also provides a paradigm for the construction of sustainable reaction systems via multienergy harnessing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c18284DOI Listing

Publication Analysis

Top Keywords

multienergy codriven
12
electron transfer
8
nano-bio interface
8
photobiocatalytic systems
8
energy
6
multienergy
4
codriven electron
4
transfer nano-bio
4
interface efficient
4
efficient photobiocatalysis
4

Similar Publications