A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Bayesian Windkessel calibration using optimized zero-dimensional surrogate models. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bayesian boundary condition (BC) calibration approaches from clinical measurements have successfully quantified inherent uncertainties in cardiovascular fluid dynamics simulations. However, estimating the posterior distribution for all BC parameters in three-dimensional (3D) simulations has been unattainable due to infeasible computational demand. We propose an efficient method to identify Windkessel parameter posteriors: We only evaluate the 3D model once for an initial choice of BCs and use the result to create a highly accurate zero-dimensional (0D) surrogate. We then perform Sequential Monte Carlo (SMC) using the optimized 0D model to derive the high-dimensional Windkessel BC posterior distribution. Optimizing 0D models to match 3D data lowered their median approximation error by nearly one order of magnitude in 72 publicly available vascular models. The optimized 0D models generalized well to a wide range of BCs. Using SMC, we evaluated the high-dimensional Windkessel parameter posterior for different measured signal-to-noise ratios in a vascular model, which we validated against a 3D posterior. The minimal computational demand of our method using a single 3D simulation, combined with the open-source nature of all software and data used in this work, will increase access and efficiency of Bayesian Windkessel calibration in cardiovascular fluid dynamics simulations.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.

Download full-text PDF

Source
http://dx.doi.org/10.1098/rsta.2024.0223DOI Listing

Publication Analysis

Top Keywords

bayesian windkessel
8
windkessel calibration
8
zero-dimensional surrogate
8
cardiovascular fluid
8
fluid dynamics
8
posterior distribution
8
computational demand
8
windkessel parameter
8
high-dimensional windkessel
8
calibration optimized
4

Similar Publications