Comparative Analysis of Amorphous and Biodegradable Copolymers: A Molecular Dynamics Study Using a Multi-Technique Approach.

Molecules

Natural Science Department, LaGuardia Community College, City University of New York, 31-10 Thomson Ave, Long Island City, NY 11101, USA.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We investigate the molecular dynamics of glycolide/lactide/caprolactone (Gly/Lac/Cap) copolymers using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), H second-moment, H spin-lattice relaxation time (T) analysis, and C solid-state NMR over a temperature range of 100-413 K. Activation energies and correlation times of the biopolymer chains were determined. At low temperatures, relaxation is governed by the anisotropic threefold reorientation of methyl (-CH) groups in lactide. A notable change in T at ~270 K and 294 K suggests a transition in amorphous phase mobility due to translational diffusion, while a second relaxation minimum (222-312 K) is linked to CH group dynamics influenced by caprolactone. The activation energy increases from 5.9 kJ/mol (methyl motion) to 22-33 kJ/mol (segmental motion) as the caprolactone content rises, enhancing the molecular mobility. Conversely, lactide restricts motion by limiting rotational freedom, thereby slowing global dynamics. DSC confirms that increasing ε-caprolactone lowers the glass transition temperature, whereas higher glycolide and lactide content raises it. The onset temperature of main-chain molecular motion varies with the composition, with greater ε-caprolactone content enhancing flexibility. These findings highlight the role of composition in tuning relaxation behavior and molecular mobility in copolymers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901524PMC
http://dx.doi.org/10.3390/molecules30051175DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
molecular mobility
8
molecular
5
comparative analysis
4
analysis amorphous
4
amorphous biodegradable
4
biodegradable copolymers
4
copolymers molecular
4
dynamics
4
dynamics study
4

Similar Publications

Stabilizing the retromer complex rescues synaptic dysfunction and endosomal trafficking deficits in an Alzheimer's disease mouse model.

Acta Neuropathol Commun

September 2025

Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.

Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.

View Article and Find Full Text PDF

Unraveling biomolecular interactions: a comprehensive review of the electromobility shift assay.

Photochem Photobiol Sci

September 2025

Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.

The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.

View Article and Find Full Text PDF

Volume correlative light and electron microscopy (vCLEM) is a powerful imaging technique that enables the visualization of fluorescently labeled proteins within their ultrastructural context. Currently, vCLEM alignment relies on time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the three-dimensional alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques.

View Article and Find Full Text PDF

A rapid imaging-based screen for induced-proximity degraders identifies a potent degrader of oncoprotein SKP2.

Nat Biotechnol

September 2025

Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.

Targeted protein degraders hold potential as therapeutic agents to target conventionally 'undruggable' proteins. Here, we develop a high-throughput screen, DEath FUSion Escaper (DEFUSE), to identify small-molecule protein degraders. By conjugating the protein of interest to a fast-acting triggerable death protein, this approach translates target protein degradation into a cell survival phenotype to illustrate the presence of degraders.

View Article and Find Full Text PDF

Promiscuity, or selectivity on a spectrum, is an encoded feature in biomolecular anion recognition. To unravel the molecular drivers of promiscuous anion recognition, we have employed a comprehensive approach - spanning experiment and theory - with the Staphylococcus carnosus nitrate regulatory element A (ScNreA) as a model. Thermodynamic analysis reveals that ScNreA complexation with native nitrate and nitrite or non-native iodide is an exothermic process.

View Article and Find Full Text PDF