Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study reported a successful mainstream B-stage nitritation reactor with sludge granulation that incorporated a side-stream anaerobic reactor to treat municipal wastewater A-stage effluent. With influent COD/N and COD/P ratios of 2.60 and 27.1, respectively, the system achieved a stable nitrite accumulating ratio (NAR) of 95.1% via partial nitrification with sludge granulations. Kinetic assessment,16S ribosomal RNA sequencing, and functional gene marker quantification confirmed successful nitrite-oxidizing bacteria (NOB) out-selection (<0.05% relative abundance), while none of the commonly employed approaches for NOB out-selection occurred in our study. Notably, approximately 90% of the total biomass was in the biofilm in the mainstream sequencing batch reactor (SBR), with the remaining 10% of the biomass in suspension as granules under the selective wasting strategy. The substrates and oxygen gradient along the depth of the biofilm's layered structure, alongside the anaerobic conditions in the side-stream reactor, were suggested to play roles in NOB suppression and out-selection. Overall, this study provided evidence for a possible new strategy for achieving stable mainstream B-stage nitritation, which is the prerequisite for the downstream anammox process. The novelty aspect of the systems, including the incorporation of an anaerobic sire-stream reactor, absence of the employment of any previously reported nitritation strategies, and granulation formation, provided possible new feasible routes to achieve mainstream short-cut nitrogen removal for efficient wastewater treatment. PRACTITIONER POINTS: Stable partial nitrification achieved in mainstream B-stage SBR under conditions distinct from previous reports. NOB out-selection confirmed by both activities' tests and molecular analysis. Thick biofilm and anaerobic side-stream reactor likely facilitated NOB suppression. Stable sludge granulation was maintained with selective wasting strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wer.70056DOI Listing

Publication Analysis

Top Keywords

mainstream b-stage
8
b-stage nitritation
8
strategy integration
4
integration anaerobic
4
anaerobic side-stream
4
side-stream reactor
4
reactor mainstream
4
nitritation short-cut
4
short-cut nitrogen
4
nitrogen removal
4

Similar Publications

This study reported a successful mainstream B-stage nitritation reactor with sludge granulation that incorporated a side-stream anaerobic reactor to treat municipal wastewater A-stage effluent. With influent COD/N and COD/P ratios of 2.60 and 27.

View Article and Find Full Text PDF

Low-carbon nitrogen removal, bioenergy production, and phosphorus recovery are key goals for sustainable municipal wastewater treatment. Traditional activated sludge processes face an energy demand conflict. Anaerobic ammonium oxidation (Anammox) offers a solution to this issue, with the A-B process providing a sustainable approach.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a new system called A-B-S2EBPR for efficient nitrogen removal from low-strength municipal wastewater by promoting nitrite accumulation.
  • Researchers achieved significant nitrite levels (5.5 mg N/L) and high removal efficiency of total inorganic nitrogen (TIN at 84.9%) through a combination of biological processes.
  • The findings highlight a shift in microbial communities that favor partial denitrification over conventional nitrification, with specific microorganisms utilizing carbon sources during the process.
View Article and Find Full Text PDF

A novel integrated pilot-scale A-stage high rate activated sludge, B-stage short-cut biological nitrogen removal and side-stream enhanced biological phosphorus removal (A/B-shortcut N-S2EBPR) process for treating municipal wastewater was demonstrated with the aim to achieve simultaneous and carbon- and energy-efficient N and P removal. In this studied period, an average of 7.62 ± 2.

View Article and Find Full Text PDF

Side-Stream Enhanced Biological Phosphorus Removal (S2EBPR) enables effective phosphorus removal in a pilot-scale A-B stage shortcut nitrogen removal system for mainstream municipal wastewater treatment.

Water Res

March 2024

Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, United States; School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY, 14853, United States. Electronic address:

While the adsorption/bio-oxidation (A/B) process has been widely studied for carbon capture and shortcut nitrogen (N) removal, its integration with enhanced biological phosphorus (P) removal (EBPR) has been considered challenging and thus unexplored. Here, full-scale pilot testing with an integrated system combining A-stage high-rate activated sludge with B-stage partial (de)nitrification/anammox and side-stream EBPR (HRAS-P(D)N/A-S2EBPR) was conducted treating real municipal wastewater. The results demonstrated that, despite the relatively low influent carbon load, the B-stage P(D)N-S2EBPR system could achieve effective P removal performance, with the carbon supplement and redirection of the A-stage sludge fermentate to the S2EBPR.

View Article and Find Full Text PDF