Mutant prevention concentrations and phenotypic and genomic profiling of first-step resistance mechanisms to classical and novel β-lactams in .

Antimicrob Agents Chemother

Department of Microbiology, Hospital Universitari Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), CIBERINFEC, Palma, Spain.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A growing number of novel antipseudomonal β-lactams have been introduced in recent years, but the emergence of resistance is still a major concern in the treatment of infections. Here, we compared the mutant prevention concentrations (MPCs) and the nature of first-step resistant mutants to classical and novel β-lactams in . MPCs were determined in duplicate experiments for ceftazidime, ceftazidime/avibactam, ceftolozane/tazobactam, imipenem, imipenem/relebactam, meropenem, meropenem/vaborbactam, aztreonam, aztreonam/avibactam, and cefiderocol in PAO1, PAOMS (Δ), and three extensively drug-resistant (XDR) clinical strains belonging to high-risk clones ST111, ST175, and ST235. Four mutants per strain and antibiotic, obtained from the highest concentration showing growth, were characterized through the determination of the susceptibility profiles and whole genome sequencing. Imipenem/relebactam presented the lowest MPC values, followed by ceftolozane/tazobactam. Overall, the MICs of the mutants were consistent with the antibiotic selection concentration, except for cefiderocol, which were much lower. MPCs were lower for ceftazidime/avibactam and imipenem/relebactam than those of the corresponding β-lactam alone. In contrast, MPCs of meropenem ± vaborbactam and aztreonam ± avibactam were identical in most strains. Ceftolozane/tazobactam and ceftazidime/avibactam derivatives presented mutations in , , and/or in when present in the parent strain (ST235). Cefiderocol mutants were mainly defective in iron-uptake systems, particularly PiuA/DC. All carbapenems had oprD as the first-step mechanism. Imipenem/relebactam, meropenem ± vaborbactam, and aztreonam ± avibactam selected mutations frequently included efflux pumps and regulators. Imipenem ± relebactam also selected mutations. This work first describes the MPCs and first-step resistance mechanisms for classical and novel β-lactams in . The identified shared and differential resistance development patterns between the available classical and novel β-lactams should be helpful to guide treatment strategies for XDR infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963537PMC
http://dx.doi.org/10.1128/aac.01942-24DOI Listing

Publication Analysis

Top Keywords

classical novel
16
novel β-lactams
16
mutant prevention
8
prevention concentrations
8
first-step resistance
8
resistance mechanisms
8
mechanisms classical
8
imipenem/relebactam meropenem
8
meropenem vaborbactam
8
vaborbactam aztreonam
8

Similar Publications

Neural circuits sculpt their structure and modify the strength of their connections to effectively adapt to the external stimuli throughout life. In response to practice and experience, the brain learns to distinguish previously undetectable stimulus features recurring in the external environment. The unconscious acquisition of improved perceptual abilities falls into a form of implicit learning known as perceptual learning.

View Article and Find Full Text PDF

Emerging Molecular Targets in Neurodegenerative Disorders: New Avenues for Therapeutic Intervention.

Basic Clin Pharmacol Toxicol

October 2025

Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.

Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and frontotemporal dementia represent a significant global health burden with limited therapeutic options. Current treatments are primarily symptomatic and fail to modify disease progression, emphasizing the urgent need for novel, mechanism-based interventions. Recent advances in molecular neuroscience have identified several non-classical pathogenic pathways, including neuroinflammation, mitochondrial dysfunction, impaired autophagy and proteostasis, synaptic degeneration and non-coding RNA dysregulation.

View Article and Find Full Text PDF

Bridging Planarian Bioassays and AOP-Based Environmental Assessment: Toward Mechanistic Insights into Pollutant-Induced Disruptions.

Environ Res

September 2025

School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom. Electronic address:

Human activities have introduced a wide range of contaminants into aquatic ecosystems, posing substantial ecological and health risks. Robust bioindicators are essential for accurately predicting these impacts. Since the early 1980s, planarians-freshwater flatworms known for their remarkable regenerative ability and neurologically relevant system-have been used in ecotoxicology, witnessing renewed scientific interest post-2010.

View Article and Find Full Text PDF

Global challenges posed by freshwater scarcity and the water-energy nexus drive demand for novel macromolecular design of tailored nanostructures endowed with a variety of hydrophilic and hydrophobic features. Offering potential to meet this demand, metal-organic framework (MOF) materials are synthesized from coordinated formations that create versatile reticular structures with variable water adsorption affinities. However, advances in the fundamental understanding of water interactions within these structures are impeded by the failure of classical analyses to identify mechanisms of interaction, connect fundamental isotherm types, and provide appropriate benchmarks for assessment.

View Article and Find Full Text PDF

Redefining cognitive neurodynamics through transdisciplinary innovation.

Cogn Neurodyn

December 2025

NeuroHeuristic Research Group, University of Lausanne, UNIL Chamberonne Internef 138.1, 1015 Lausanne, VD Switzerland.

This paper introduces the concept of -a novel transdisciplinary paradigm designed to advance cognitive neurodynamics by integrating insights from molecular biology, computing, behavioral science, and clinical neuroscience. Contrasted with the traditional reductionist approach rooted in classical determinism, neuroheuristics emphasizes a flexible, problem-solving methodology for investigating brain function across multiple levels of complexity. The paper explores the epistemological interplay among genetic, epigenetic, and environmental factors in brain development and pathology.

View Article and Find Full Text PDF