Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Volatile organic compounds (VOCs) are common constituents of fruits, vegetables, and crops, and are closely associated with their quality attributes, such as firmness, sugar level, ripeness, translucency, and pungency levels. While VOCs are vital for assessing vegetable quality and phenotypic classification, traditional detection methods, such as Gas Chromatography-Mass Spectrometry (GC-MS) and Proton Transfer Reaction Mass Spectrometry (PTR-MS) are limited by expensive equipment, complex sample preparation, and slow turnaround time. Additionally, the transient nature of VOCs complicates their detection using these methods. Here, we developed a paper-based colorimetric sensor array combined with needles that could: 1) induce vegetable VOC release in a minimally invasive fashion, and 2) analyze VOCs in situ with a smartphone reader device. The needle sampling device helped release specific VOCs from the studied vegetables that usually require mechanic stimulation, while maintaining the vegetable viability. On the other hand, the colorimetric sensor array was optimized for sulfur compound-based VOCs with a limit of detection (LOD) in the 1-25 ppm range, and classified fourteen different vegetable VOCs, including sulfoxides, sulfides, mercaptans, thiophenes, and aldehydes. By combining principal components analysis (PCA) analysis, the integrated sensor platform proficiently discriminated between four vegetable subtypes originating from two major categories within 2 min of testing time. Additionally, the sensor demonstrates the capability to distinguish between different types of tested fruits and vegetables, including garlic, green pepper, and nectarine. This rapid and minimally invasive sensing technology holds great promise for conducting field-based vegetable quality monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2025.117341 | DOI Listing |