Profiles of aroma volatile components in textured vegetable proteins using headspace solid phase microextraction-gas chromatography-mass spectrometry.

Curr Res Food Sci

Corporate Technology Office, Pulmuone. Co. Ltd., 29, Osongsaengmyeong 10-ro, Osong-eup, Heungdeok-gu, Cheongju, 28220, Republic of Korea.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Textured vegetable protein (TVP) is a significant alternative to meat, with its primary raw materials being soybeans, peas, rice, and wheat proteins. While advancements in technology have successfully replicated the unique texture of meat in plant-based proteins, research on the aroma profiles of these key raw materials remains limited. The subtle differences in aroma between meat and meat substitutes are yet to be fully addressed. In this study, we employed headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS), a specialized technique for the analysis of volatile aromatic compounds, to examine the volatile profiles of soybean, pea, rice, and wheat proteins. The identified volatile compounds included alcohols, aldehydes, carboxylic acids, ethers, furans, indoles, ketones, phenols, pyrans, and sulfur compounds. Based on prior research, eight compounds (hexanal, nonanal, 2-nonenal, 3-methylbutanal, benzaldehyde, 1-octen-3-ol, 3-octen-2-one, and 2-pentylfuran) were classified as off-flavors. Hexanal, a key marker, was found in the following order: rice showed the highest levels, followed by soybeans, peas, and wheat. Other major volatile components exhibited distinct ratios across the samples. These findings could assist in refining the next generation of TVPs and minimizing aroma heterogeneity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889959PMC
http://dx.doi.org/10.1016/j.crfs.2025.100999DOI Listing

Publication Analysis

Top Keywords

volatile components
8
textured vegetable
8
chromatography-mass spectrometry
8
raw materials
8
soybeans peas
8
rice wheat
8
wheat proteins
8
volatile
5
profiles aroma
4
aroma volatile
4

Similar Publications

Analysis of flavor formation and metabolite changes during production of Double-Layer Steamed Milk Custard made from buffalo milk.

PLoS One

September 2025

Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, China.

Double-Layer Steamed Milk Custard (DLSMC) is a famous traditional Chinese dessert. This study aimed to analyze the flavor and the changes in metabolites during different stages of DLSMC preparation, including raw buffalo milk, thermo-processing, first and second-layer milk skin formation. Electronic nose and electronic tongue were employed to preliminarily assess the overall flavor characteristics between these stages.

View Article and Find Full Text PDF

Effect of molecular weight distribution of sesame meal hydrolysates on the flavor profile of cysteine Maillard reaction products.

J Food Sci Technol

October 2025

School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Engineering Research Centre of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, 230009 China.

Unlabelled: A complex enzyme mixture of papain, neutral protease, and flavor protease was used to treat sesame meal at 50 °C for 3 h, yielding four peptide fractions (PF) with distinct molecular weight distributions of PF1 (> 10 kDa), PF2 (3-10 kDa), PF3 (1-3 kDa), and PF4 (< 1 kDa). and xylose were added to peptide mixtures heated to 120 °C in an oil bath for 120 min to form Maillard reaction product (MRP). PF4 peptides (< 1 kDa) had a substantial impact on pH, color, and browning intensity, whereas PF3 peptides (1-3 kDa) improved the meat-like flavor, mouth fullness, and umami taste.

View Article and Find Full Text PDF

Essential oils (EOs) are secondary metabolites of plants, made up of a wide range of aromatic volatile compounds found in different concentrations. These essential oil components (EOCs) are widely recognized for their diverse biological activities, including antibacterial, antifungal, and antioxidant properties, among others. Consequently, EOs have garnered significant interest across various industries, such as pharmaceutical, agri-food, and perfumery.

View Article and Find Full Text PDF

Analysis of antioxidant capacity and wine quality characteristics of fermented colored highland barley based on metabolomics.

Food Chem X

August 2025

College of Agronomy, Northwest A&F University, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi Province, China.

Colored highland barley is a promising nutrient-rich functional food. However, antioxidant capacity after fermentation and the quality of the resulting wine remain unexplored. This study investigated how the accumulation of non-volatile metabolites in four fermented colored highland barley varieties influences antioxidant capacity and wine quality.

View Article and Find Full Text PDF

Electrophysiological identification of 4 macrocyclic lactones as female-specific volatiles of the agarwood tree defoliator Heortia vitessoides (Lepidoptera: Crambidae).

Insect Sci

September 2025

CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.

Agarwood trees (Aquilaria spp.) are widely cultivated in tropical Asia for their valuable resin. The defoliator moth Heortia vitessoides Moore (Lepidoptera: Crambidae) is a devastating pest that significantly limits the productivity of agarwood plantations.

View Article and Find Full Text PDF