98%
921
2 minutes
20
With increased manufacturing activities and energy sector development, monitoring of heavy metal ion (HMI) pollution is becoming increasingly pressing. The discharge of metals from industrial effluents into the waterways could cause major economic and environmental disruption. In situ and on-site detection methods of trace HMIs can be effective countermeasures before the toxicity spreads out to larger areas, affecting the ecosystem. Conventional methods are often lacking in portability and costly. In contrast, electrochemical sensing, especially with nanoplatforms, is promising for trace detection of HMIs in complex media because of the ease of fabrication and adaptability of incorporating green technology. Appropriate electrode selection with suitable modifiers is crucial in complex medium analyses to overcome electrode fouling. In this review, the evolution from metal-based and carbon-based electrodes to advancements in electrode modification involving agro/biocomposite nanomaterials (NMs) such as cellulose, chitosan, and hydroxyapatite is discussed. The fabrication of nucleic acid-based aptasensors for analyzing HMIs and the adoption of smart systems based on microfluidics with high selectivity, operational stability, and sensitivity are highlighted. The challenges and future prospects for trace HMI determination based on electrochemical sensors in real complex media, including blood and industrial effluent or wastewater, are critically examined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.141745 | DOI Listing |
JMIR Res Protoc
September 2025
National Institute of Public Health, University of Southern Denmark, Copenhagen K, Denmark.
Background: The high and increasing rate of poor mental health among young people is a matter of global concern. Experiencing poor mental health during this formative stage of life can adversely impact interpersonal relationships, academic and professional performance, and future health and well-being if not addressed early. However, only a few of those in need seek help.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Materials DX Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
The quantum mechanics/molecular mechanics (QM/MM) method is a powerful approach for investigating solid surfaces in contact with various types of media, since it allows for flexible modeling of complex interfaces while maintaining an all-atom representation. The mean-field QM/MM method is an average reaction field model within the QM/MM framework. The method addresses the challenges associated with the statistical sampling of interfacial atomic configurations of a medium and enables efficient calculation of free energies.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Engineering and School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.
Citizen science engages volunteers to contribute data to scientific projects, often through visual annotation tasks. Hearing based activities are rare and less well understood. Having high quality annotations of performed music structures is essential for reliable algorithmic analysis of recorded music with applications ranging from music information retrieval to music therapy.
View Article and Find Full Text PDFJ Palliat Med
September 2025
ATLANTES Global Observatory of Palliative Care, Instituto Cultura y Sociedad, Universidad de Navarra, Navarra, Spain.
International research projects, such as Horizon 2020 (H2020) and ERASMUS+, generate numerous scientific and educational outcomes. However, these are often disseminated in fragmented formats, limiting long-term access and impact. Language barriers further complicate the dissemination in professional communities that do not speak English.
View Article and Find Full Text PDFMol Biol Cell
September 2025
Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
The ESCRT machinery mediates membrane remodeling in fundamental cellular processes including cytokinesis, endosomal sorting, nuclear envelope reformation, and membrane repair. Membrane constriction and scission is driven by the filament-forming ESCRT-III complex and the AAA-ATPase VPS4. While ESCRT-III-driven membrane scission is generally established, the mechanisms governing the assembly and coordination of its twelve mammalian isoforms in cells remain poorly understood.
View Article and Find Full Text PDF