A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Physics-informed machine learning for automatic model reduction in chemical reaction networks. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Physics-informed machine learning bridges the gap between the high fidelity of mechanistic models and the adaptive insights of artificial intelligence. In chemical reaction network modeling, this synergy proves valuable, addressing the high computational costs of detailed mechanistic models while leveraging the predictive power of machine learning. This study applies this fusion to the biomedical challenge of Aβ fibril aggregation, a key factor in Alzheimer's disease. Central to the research is the introduction of an automatic reaction order model reduction framework, designed to optimize reduced-order kinetic models. This framework represents a shift in model construction, automatically determining the appropriate level of detail for reaction network modeling. The proposed approach significantly improves simulation efficiency and accuracy, particularly in systems like Aβ aggregation, where precise modeling of nucleation and growth kinetics can reveal potential therapeutic targets. Additionally, the automatic model reduction technique has the potential to generalize to other network models. The methodology offers a scalable and adaptable tool for applications beyond biomedical research. Its ability to dynamically adjust model complexity based on system-specific needs ensures that models remain both computationally feasible and scientifically relevant, accommodating new data and evolving understandings of complex phenomena.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889170PMC
http://dx.doi.org/10.1038/s41598-025-92680-8DOI Listing

Publication Analysis

Top Keywords

machine learning
12
model reduction
12
physics-informed machine
8
automatic model
8
chemical reaction
8
mechanistic models
8
reaction network
8
network modeling
8
model
5
models
5

Similar Publications