A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Behavioral microanalyses refine sign-tracking characterization and uncover different response dynamics during omission and extinction learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sign-tracking, a conditioned response in which animals engage with reward-predictive cues, is a powerful behavioral tool for assessing Pavlovian motivation. In rodents, it is most frequently studied via automatic readouts, such as deflections of levers that act as reward cues. These readouts have been immensely helpful, but they may not be ideal for some tasks and paradigms. For example, animals can show a range of sign-tracking responses to a lever cue that do not result in lever deflection, and a reduction in deflections when animals are exposed to an omission contingency (i.e., when lever deflection cancels reward) hides the fact that the animals are still sign-tracking in other ways. Here, we analyzed the behavior of sign-tracking animals through both video monitoring and automatic task readouts in Pavlovian conditioning. This analysis aided in the classification of sign-tracking animals and revealed that lever deflections do not result from any identifiable pattern of sign-tracking. We then used omission and extinction procedures to unmask detailed behavior changes that can only be detected with video data. Automated readouts showed similar reductions of lever deflection in both task conditions. However, detailed behavioral analysis revealed quite distinct behavioral adaptations to these conditions with sign-tracking decreasing entirely during extinction while many sign-tracking behaviors (biting, sniffing, etc.) seemed to remain persistent during omission despite the decrease in deflections. Detailed behavioral analysis was thus critical for capturing sign-tracking maintenance, persistence, and loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924597PMC
http://dx.doi.org/10.1101/lm.054065.124DOI Listing

Publication Analysis

Top Keywords

lever deflection
12
sign-tracking
10
omission extinction
8
sign-tracking animals
8
detailed behavioral
8
behavioral analysis
8
animals
6
behavioral
5
lever
5
behavioral microanalyses
4

Similar Publications