A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Modeling Pb(II) Adsorption on Mineral Surfaces: Bridging Density Functional Theory and Experiment with Thermodynamic Insights. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite decades of work on aqueous lead (Pb) adsorption on α-FeO (hematite) and α-AlO (alumina), gaps between measurements and modeling obscure molecular-level understanding. Achieving well-matched geometries between theory and experiment for mineral-water interfaces is a hurdle, as surface functional group type and distribution must be accounted for in determining mechanisms. Additionally, computational methods that can describe the substrate are often not appropriate to capture aqueous effects. Progress requires focusing on well-studied and relevant systems, such as key facets (001), (012), and (110) of hematite and alumina, and ubiquitous contaminants such as aqueous Pb. In the past, bulk-parameterized bond-valence principles were used to rationalize Pb(II) adsorption trends. These approaches can break down at surfaces, where flexible bonding environments and adsorption-induced surface relaxations play a critical role. Here, we adapt and apply a density functional theory (DFT) and thermodynamics framework, integrating DFT-calculated energies with experimental data and electrochemical principles, to predict Pb(II) adsorption. Our model results capture trends across the full set of surfaces and predict that inner-sphere Pb(II) sorption on (001) alumina varies from unfavorable to weakly favorable across a range of pH conditions. This aligns with experimental insights that Pb(II) interacts at that surface through outer-sphere interactions. Extending to Fe(II) adsorption, we demonstrate a coverage-dependent site preference, potentially explaining disorder in overlayers grown by the oxidative adsorption of Fe(II) on hematite (001).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.5c00390DOI Listing

Publication Analysis

Top Keywords

pbii adsorption
12
density functional
8
functional theory
8
theory experiment
8
adsorption
6
modeling pbii
4
adsorption mineral
4
mineral surfaces
4
surfaces bridging
4
bridging density
4

Similar Publications