A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optimal control-based nuclear spin cross-polarization in the presence of complicating anisotropic interactions. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cross-polarization is an indispensable part of solid state nuclear magnetic resonance spectroscopy to enhance sensitivity and extract structural information. However, the presence of certain anisotropic interactions, including chemical shift anisotropy and quadrupolar coupling, makes the inter-nuclear spin correlation experiments challenging. This impedes characterization of numerous materials and pharmaceutical compounds containing isotopes, such as F with large chemical shift anisotropy and Li, Na, Al, , with quadrupolar coupling. To address this problem, we introduce a new optimal control simulation-generated pulse sequence for Optimal Polarization Transfer In the presence of Anisotropic Nuclear Spin interactions (OPTIANS). Numerical simulations show high efficiency and robustness against experimental imperfections under a broad range of anisotropic interaction strengths for F-Li, F-Na, F-Al, and F-C polarization transfers. The polarization transfer curves show transient oscillations, which make the pulse sequence a quantitative method for dipolar coupling measurements. Experiments on a multi-metal fluoride system validate the predictions of the simulations by showing efficient PT in three spin pairs at varying experimental conditions. Remarkably, this method shows 50% better F-Li PT efficiency at 14.1 T compared to the ramped cross-polarization experiment. The underlying polarization transfer mechanism is analyzed using the Fourier transform of the polarization transfer curves revealing that this optimal control method utilizes the chemical shift anisotropy and quadrupolar coupling to facilitate robust and efficient cross-polarization.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5cp00096cDOI Listing

Publication Analysis

Top Keywords

polarization transfer
16
chemical shift
12
shift anisotropy
12
anisotropy quadrupolar
12
quadrupolar coupling
12
nuclear spin
8
anisotropic interactions
8
presence anisotropic
8
optimal control
8
pulse sequence
8

Similar Publications