98%
921
2 minutes
20
Prostate cancer (PCa) is an androgen-dependent malignancy, with HSP90 and HSP70 serving as classical molecular chaperones that maintain androgen receptor (AR) protein stability and regulate its transcriptional activation. Surprisingly, our study identified TOMM20, a mitochondrial outer membrane protein, as a potential molecular chaperone with similar roles to HSP90/HSP70. We found that TOMM20 expression is elevated in PCa tissues and cell lines and positively correlates with AR levels. RNA-seq analysis revealed that TOMM20 knockdown significantly reduced the mRNA levels of AR-regulated genes. Additionally, the protein level of KLK3 (PSA) decreased, and AR binding to the androgen response element (ARE) of the KLK3 promoter was diminished following TOMM20 knockdown, leading to decreased KLK3 gene transcription. Furthermore, TOMM20 depletion reduced both cytoplasmic and nuclear AR protein levels and facilitated AR degradation via an E3 ubiquitin ligase SKP2-mediated ubiquitin-proteasome pathway, independent of heat shock proteins (HSPs). To our knowledge, this is the first report demonstrating that TOMM20, a mitochondrial outer translocase protein, stabilizes AR protein and enhances its transcriptional activity, while its knockdown promotes AR degradation through the SKP2-mediated ubiquitin-proteasome pathway. These findings suggest that TOMM20 may serve as a potential biomarker for PCa progression and a promising therapeutic target for drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41388-025-03328-w | DOI Listing |
Front Mol Neurosci
August 2025
Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, United States.
Introduction: Endothelial-to-mesenchymal transition (EndoMT), cell death, and fibrosis are increasingly recognized as contributing factors to Alzheimer's disease (AD) pathology, but the underlying transcriptomic mechanisms remain poorly defined. This study aims to elucidate transcriptomic changes associated with EndoMT, diverse cell death pathways, and fibrosis in AD using the 3xTg-AD mouse model.
Methods: Using RNA-seq data and knowledge-based transcriptomic analysis on brain tissues from the 3xTg-AD mouse model of AD.
Front Biosci (Landmark Ed)
August 2025
University of Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, 49330 Angers, France.
The bioenergetic machinery of the cell is protected and structured within two layers of mitochondrial membranes. The mitochondrial inner membrane is extremely rich in proteins, including respiratory chain complexes, substrate transport proteins, ion exchangers, and structural fusion proteins. These proteins participate directly or indirectly in shaping the membrane's curvature and facilitating its folding, as well as promoting the formation of nanotubes, and proton-rich pockets known as cristae.
View Article and Find Full Text PDFMicrosc Res Tech
September 2025
Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.
Camels have unique morphological traits that enable them to adapt well to harsh conditions. This work aims to describe the vascular architecture of the camel retina and investigate its cellular components with a focus on the distribution of mitochondria in Muller cells and photoreceptors, using light and electron microscopy. The camel retina is euangiotic in which blood vessels extend in the inner retina from the nerve fiber layer to the outer plexiform layer.
View Article and Find Full Text PDFMicroPubl Biol
August 2025
Faculty of Science, Yamagata University.
In yeast, mitochondrial fission is mediated by the dynamin-like GTPase Dnm1, which is recruited to the mitochondrial outer membrane by its receptor, Fis1. To investigate the spatial distribution of Fis1, we used the CRISPR-Cas9 system to insert the gene fragment encoding mNeonGreen into the gene for its N-terminal tagging. Fluorescence microscopy revealed that mNeonGreen-Fis1 appeared as discrete puncta on mitochondria, in addition to a diffuse signal.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a heterogeneous disease characterized by a broad spectrum of molecular alterations that influence clinical outcomes. TP53 mutations define one of the most lethal subtypes of acute myeloid leukemia (AML), driving resistance to nearly all available treatment modalities, including venetoclax plus azacitidine (VenAza). Yet, the molecular basis of this resistance, beyond affecting transactivation of BCL-2 family genes, has remained elusive.
View Article and Find Full Text PDF