98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchf.2025.01.007 | DOI Listing |
Biosystems
September 2025
Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. Electronic address:
Swirling motion is an essential phenomenon that significantly influences numerous biological processes, such as the mixing of molecular components within living cells, nutrient transport, the structural changes of the cytoskeletons of contractile cells and the rearrangement of multicellular systems caused by collective cell migration. The dynamical relationship between subcellular and supracellular rearrangements enhances cell migration and contributes to tissue homeostasis. However, the basic mechanisms that drive swirling motion in biological contexts remain a matter of ongoing inquiry.
View Article and Find Full Text PDFAdv Mater
September 2025
Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, Barcelona, 08028, Spain.
Active matter, encompassing both natural and artificial systems, utilizes environmental energy to sustain autonomous motion, exhibiting unique non-equilibrium behaviors. Artificial active matter (AAM), such as nano/micromotors, holds transformative potential in precision medicine by enhancing drug delivery and enabling targeted therapeutic interventions. Under the demand for increasing intelligence in AAM, controlling their non-equilibrium processes within complex in vivo environments presents significant challenges.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Materials and New Energy, South China Normal University, Shanwei 516600, China.
Nowadays, the continuous advancement of sodium-ion battery technology has made it an important choice in the new energy field and promoted the development of lithium-ion batteries. The cycling stability of cathode materials for sodium-ion batteries at high voltage (>4.0 V) is still a key challenge.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109.
In recent years the functionality of synthetic active microparticles has edged even closer to that of their biological counterparts. However, we still lack the understanding needed to recreate at the microscale key features of autonomous behavior exhibited by microorganisms or swarms of macroscopic robots. In this study, we propose a model for a three-dimensional deformable cellular composite particle consisting of self-propelled rod-shaped colloids confined within a flexible vesicle-representing a superstructure we call a "flexicle" that couples particle deformation to the internal dynamics of the internal active components.
View Article and Find Full Text PDFSoft Matter
September 2025
Department of Chemical Engineering, Columbia University, New York, NY, USA.
Magnetic microrobots capable of navigating complex fluid environments typically rely on real-time feedback to adjust external fields for propulsion and guidance. As an alternative, we explore the use of field-programmable rheotaxis, in which time-periodic magnetic fields drive directional migration of ferromagnetic particles in simple shear flows. Using a deterministic model that couples magnetic torques to hydrodynamic interactions near a surface, we show that the frequency, magnitude, and waveform of the applied field can encode diverse rheotactic behaviors-including downstream, upstream, and cross-stream migration relative to the flow.
View Article and Find Full Text PDF