98%
921
2 minutes
20
Background: Lymphedema is an incurable disease associated with lymphatic dysfunction that causes tissue swelling and fibrosis. We investigated whether lymphedema could be attenuated by interfering with uPARAP (urokinase plasminogen activator receptor-associated protein; gene), an endocytic receptor involved in fibrosis and lymphangiogenesis.
Methods: We generated mice with lymphatic endothelial cell (LEC)-specific deficiency and compared them with constitutive knockout mice by applying a preclinical model of secondary lymphedema (SL). Computerized methods were applied for 2-dimensional and 3-dimensional image quantifications. Cellular effects of uPARAP deletion on lymphatic permeability were assessed by small interfering RNA-mediated silencing in human dermal LECs and a pharmacologic treatment targeting ROCK (Rho-associated coiled coil containing kinase), an established regulator of cell junctions. The uPARAP and vascular endothelial cadherin partnership was investigated through proximity ligation assay, coimmunoprecipitation, and immunostaining. An in silico model was generated to analyze the fluid-absorbing function of the lymphatic vasculature. To interfere with uPARAP, its downregulation was achieved in vivo through a gapmer approach.
Results: deficiency mitigated several key pathologic features of SL, including hindlimb swelling, epidermal thickening, and the accumulation and size of adipocytes. In both global and LEC-conditional -deficient mice, induction of SL led to a distinctive labyrinthine vasculature, defined herein by twisted and hyperbranched vessels with overlapping cells. This topology, mainly composed of pre-collecting vessels, correlated with reduced SL, but not with change in fibrosis, highlighting the importance of uPARAP in regulating LEC functions in a lymphedematous context. In vitro, uPARAP knockdown in LECs impaired vascular endothelial growth factor C-mediated endosomal trafficking of vascular endothelial cadherin and induced overlapping cell junctions. The pharmacologic inhibition of ROCK recapitulated cell superimposition in vitro and the labyrinthine vasculature in vivo with attenuated SL. Computational modeling of labyrinthine lymphatic vasculature supported the observation on their improved fluid-absorbing function in comparison with a normal hierarchic network. These data provide proof of concept of inducing a labyrinthine topology to treat SL. For therapeutic purposes, we validated the use of an anti-uPARAP gapmer to induce a labyrinthine vasculature and attenuate SL formation.
Conclusions: Our findings provide evidence that downregulating uPARAP expression can induce a beneficial remodeling of lymphatic vasculature that attenuates lymphedema through a cell junction-based mechanism, offering a novel therapeutic pathway for lymphedema.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063686 | PMC |
http://dx.doi.org/10.1161/CIRCULATIONAHA.124.072093 | DOI Listing |
Pharmacol Ther
September 2025
Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA; Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA.
Under physiological conditions, amyloid precursor protein (APP) is critically important for normal brain development, neurogenesis, neuronal survival, and synaptic signaling. Dyshomeostasis of APP increases deposition and accumulation of amyloid β (Aβ) in the brain parenchyma and cerebral blood vessels thereby leading to development of Alzheimer's disease and cerebral amyloid angiopathy. In this review, we critically examine existing literature supporting the concept that endothelial APP performs important vascular protective functions in the brain.
View Article and Find Full Text PDFDiabetes Metab Res Rev
September 2025
Department of Nephrology, Daping Hospital, Army Medical University, Chongqing, China.
Chronic kidney disease (CKD) substantially increases cardiovascular risk, with endothelial dysfunction as its central pathological mechanism. This review summarises the molecular regulatory mechanisms underlying endothelial dysfunction in CKD and highlights recent advances in treatment strategies. The pathophysiology of endothelial injuries involves a complex network of multiple factors and mechanisms, including oxidative stress, inflammation, glycocalyx damage, ischaemia, hypoxia, cellular senescence and endothelial-mesenchymal transition (EndMT).
View Article and Find Full Text PDFSTAR Protoc
September 2025
Division of Pulmonary Medicine and Critical Care, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Systems Biology and Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Pulmonary Medicine, Cincinnati Children's Hospital Medical C
Calcium signaling is crucial for endothelial cell homeostasis. Alterations in intracellular calcium levels due to shear stress are linked to vascular dysfunction and diseases. Here, we present a protocol to perform live calcium imaging by using a live calcium indicator on human lung endothelial cells subjected to shear stress in a commercially available microfluidic device (Ibidi Luer VI).
View Article and Find Full Text PDFJ Orthop Sci
September 2025
Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, North 15 West 7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan. Electronic address:
Background: Angiosarcoma is a rare and aggressive malignancy arising from vascular endothelial cells, with distinct subtypes originating in bone (AS-B) and soft tissue (AS-ST). While these subtypes share pathological similarities, differences in clinical outcomes remain unclear due to limited data. This study aimed to compare the clinical features, treatment strategies, and survival outcomes between AS-B and AS-ST using the Surveillance, Epidemiology, and End Results (SEER) database.
View Article and Find Full Text PDFNitric Oxide
September 2025
Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA; Translational Science Center, Wake Forest University, Winston-Salem, NC 27109, USA. Electronic address:
We recently demonstrated a rapid reaction between labile ferric heme and nitric oxide (NO) in the presence of reduced glutathione (GSH) or other small thiols in a process called thiol-catalyzed reductive nitrosylation, yielding a novel signaling molecule, labile nitrosyl ferrous heme (NO-ferroheme), which we and others have shown can regulate vasodilation and platelet homeostasis. Red blood cells (RBCs) contain high concentrations of GSH, and NO can be generated in the RBC via nitrite reduction and/or RBC endothelial nitric oxide synthase (eNOS) so that NO-ferroheme could, in principle, be formed in the RBC. NO-ferroheme may also form in other cells and compartments, including in plasma, where another small and reactive thiol species, hydrogen sulfide (HS/HS), is also present and may catalyze NO-ferroheme formation akin to GSH.
View Article and Find Full Text PDF