Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Head-worn inertial sensors represent a valuable option to characterize gait in real-world conditions, thanks to the integration with glasses and hearing aids. Few methods based on head-worn sensors allow for stride-by-stride gait speed estimation, but none has been developed with data collected in real-world settings. This study aimed at validating a two-steps machine learning method to estimate initial contacts and stride-by-stride speed in real-world gait using a single inertial sensor attached to the temporal region. A convolutional network is used to detect strides. Then, stride-by-stride gait speed is inferred from the detected cycles by a gaussian process regression model. A multi-sensor wearable system was used to label over 100,000 strides recorded from 15 healthy young adults during supervised acquisitions and real-world unsupervised walking. The stride detector achieved high detection rate (F1-score > 92%) and accuracy (mean absolute error < 40 ms). Very strong correlation between target and predicted speed (Spearman coefficient > 0.86) and low mean absolute error (< 0.085 m/s) were observed. The method proved valid for the quantitative evaluation of stride-by-stride gait speed in real-world conditions. These findings lay the technical and analytical groundwork for future clinical validation and application of gait analysis frameworks that integrate inertial sensors with head-worn devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2025.3542568 | DOI Listing |