98%
921
2 minutes
20
Spine segmentation in computed tomography (CT) images is critical for automatic analysis, especially when focusing on varied spinal anatomy. Despite having comprehensive annotations for normal vertebrae, many datasets do not encompass labeled fracture data, posing challenges for predictive modeling. This research presents a three-stage 2.5D semi-supervised learning based on U-Net that utilizes both labeled and unlabeled datasets. The objectives are to reduce workload needed for manual annotation and create a model proficient in processing fracture data without prior specific fracture dataset with labeling. Due to the similarity between the vertebrae, precise segmentation is difficult. We utilized a cascade framework, which is aligned to a structured clinical examination process of the vertebral segments in order to achieve more precise delineation. In view of the voluminous data in 3D CT images and GPU performance constraints, this study strategically employs 2D network training, further supplemented by 2.5D network input, to optimize model performance. Preliminary findings suggest that this approach significantly improves the model's ability to segment spine regions, especially in environments with limited equipment capabilities. Further evaluation is required to understand its full potential in various scenarios, including impact on detection of fractures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC53108.2024.10781902 | DOI Listing |
Exp Brain Res
September 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.
View Article and Find Full Text PDFActa Psychiatr Scand
September 2025
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Introduction: Machine learning studies sometimes include a high number of predictors relative to the number of training cases. This increases the risk of overfitting and poor generalizability. A recent study hypothesized that between-trial heterogeneity precluded generalizable outcome prediction in schizophrenia from being achieved.
View Article and Find Full Text PDFHeart Lung
September 2025
Department of Nursing, College of Medicine, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan. Electronic address:
Background: In-hospital mortality in patients with acute myocardial infarction (AMI) following primary percutaneous coronary intervention (pPCI) remains a significant concern. Developing a predictive model of in-hospital mortality is crucial for identifying high-risk patients, guiding clinical decisions, and preventing in-hospital mortality. Machine learning (ML) may analyze patterns in large datasets and provide accurate predictions of in-hospital mortality in AMI patients following pPCI.
View Article and Find Full Text PDFIEEE Trans Cybern
September 2025
Sleep is essential for maintaining human health and quality of life. Analyzing physiological signals during sleep is critical in assessing sleep quality and diagnosing sleep disorders. However, manual diagnoses by clinicians are time-intensive and subjective.
View Article and Find Full Text PDFJ Food Sci
September 2025
Faculty of Computing, Federal University of Uberlandia, Uberlândia, Brazil.
The coffee roasting process is a critical factor in determining the final quality of the beverage, influencing its flavour, aroma, and acidity. Traditionally, roast-level classification has relied on manual inspection, which is time-consuming, subjective, and prone to inconsistencies. However, advancements in machine learning (ML) and computer vision, particularly convolutional neural networks (CNNs), have shown great promise in automating and improving the accuracy of this process.
View Article and Find Full Text PDF