Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mastication plays an important role in effective food digestion and nutrient absorption. Therefore, regulating masticatory force in people with declining mastication function is significant for maintaining health and quality of life. In this study, we tested the effect of tactile augmentation on mastication force. To augment tactile feedback during mastication, we applied closed-loop electrical stimulation onto the mandibular vestibule using an intraoral tooth-borne electronic system. We hypothesized that closed-loop electrical stimulation, timed with mastication and applied to the nerves delivering tactile feedback to the brain, would evoke an increase in masticatory force. Experiments were completed using the intraoral system with six healthy human subjects who masticated soft and hard foods with and without stimulation during the experiment. Their mastication forces were recorded ten times per condition. The recorded mastication force profile showed that mastication force was higher with the harder food. Also, mastication force increased when electrical stimulation was applied, compared to the non-stimulated condition. These results support the hypothesis that tactile augmentation by intraoral closed-loop electrical stimulation will increase masticatory force. Other mastication parameters including period, spike width, and duty cycle are also changed by electrical stimulation. Further, stimulation left a strong aftereffect on these mastication parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2025.3535681DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
24
mastication force
20
closed-loop electrical
16
masticatory force
12
mastication
11
force
8
intraoral closed-loop
8
stimulation
8
tactile augmentation
8
tactile feedback
8

Similar Publications

Innovative technology allows for personalization of stimulation frequency in dual-site deep brain stimulation (DBS), offering promise for challenging symptoms in advanced Parkinson's disease (PD), particularly freezing of gait (FoG). Early results suggest that combining standard subthalamic nucleus (STN) stimulation with substantia nigra pars reticulata (SNr) stimulation may improve FoG outcomes. However, patient response and the optimal SNr stimulation frequency vary.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Towards real life exposure: nasal epithelial cell stimulation with pollen particle aerosols.

Environ Res

September 2025

Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University Hospital Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Munich, Neuherberg, Germany. Electronic address:

Background: Currently, most researchers apply pollen extracts or -suspensions to assess the effects of pollen exposure on airway epithelia. How respiratory epithelia respond to pollen aerosols is not well studied because standardised methods to aerosolize pollen were not available until recently.

Aim Of Study: To develop and test a near-natural exposure model for pollen grains based on differentiated human nasal epithelial cells and a novel particle aerosoliser.

View Article and Find Full Text PDF

Amorphous silicon resistors enable smaller pixels in photovoltaic retinal prosthesis.

J Neural Eng

September 2025

Hansen Experimental Physics Laboratory, Stanford University, 452 Lomita Mall, Stanford, California, 94305, UNITED STATES.

Clinical trials of the photovoltaic subretinal prosthesis PRIMA demonstrated feasibility of prosthetic central vision with resolution matching its 100 μm pixel width. To improve prosthetic acuity further, pixel size should be decreased. However, there are multiple challenges, one of which is related to accommodating a compact shunt resistor within each pixel that discharges the electrodes between stimulation pulses and helps increase the contrast of the electric field pattern.

View Article and Find Full Text PDF

Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.

View Article and Find Full Text PDF