A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Engineering Extracellular Vesicles Secreted by Human Brain Organoids with Different Regional Identity. | LitMetric

Engineering Extracellular Vesicles Secreted by Human Brain Organoids with Different Regional Identity.

ACS Appl Mater Interfaces

Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Extracellular vesicles (EVs) are membrane-bound nanovesicles that show significance in intercellular communications and high therapeutic potential. In this study, a novel type of EV subpopulation, matrix-bound nanovesicles (MBVs), was identified from a decellularized extracellular matrix of brain organoids that were derived from human pluripotent stem cells to compare with supernatant EVs (SuEVs) isolated from spent media. The organoids generated 10-fold more MBVs than did SuEVs. SuEVs contained more enriched microRNA cargo than MBVs, and the microRNA relative abundance changed during organoid maturation. The forebrain and hindbrain organoid SuEVs had a highly overlapped protein cargo based on proteomics analysis. More membrane proteins, including integrins, were identified in MBVs than SuEVs, which could contribute to MBV retention in matrices. Lipidomics data showed that MBVs were enriched in glycerophospholipids and sphingolipids, which affect the lipid membrane rigidity and recruitment of integral membrane proteins. To mimic ischemic stroke, oxygen and glucose deprivation model results revealed stronger recovery effects of MBVs than SuEVs at the same dose. The effects were exerted by regulating autophagy, reactive oxygen species scavenging, and anti-inflammatory ability. This study laid the foundation for advancing our knowledge of intercellular communication and for developing cell-free based therapies for treating neurological disorders such as ischemic stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c22692DOI Listing

Publication Analysis

Top Keywords

mbvs suevs
12
extracellular vesicles
8
brain organoids
8
membrane proteins
8
ischemic stroke
8
mbvs
6
suevs
6
engineering extracellular
4
vesicles secreted
4
secreted human
4

Similar Publications