Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Alkyl radicals represent some of the most intriguing prospects in organic synthesis, showing diverse patterns of reactivity for versatile transformations. In light of this, the methyl radical, in addition to being a methylating agent, is also a good proposition for hydrogen atom transfer (HAT). Similarly, acetonitrile also has dual facets to its reactivity, acting as an amination reagent in the Ritter reaction while also being the progenitor to cyanomethyl radicals through HAT. We hereby take advantage of the merging of the dual reactivities of these radicals, allowing facile access to amines of various types from olefins when conjugated with a photoredox Ritter amination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.5c00302 | DOI Listing |