A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Estimation of Ganciclovir Exposure in Adults Transplant Patients by Machine Learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Valganciclovir, a prodrug of ganciclovir (GCV), is used to prevent cytomegalovirus infection after transplantation, with doses adjusted based on creatinine clearance (CrCL) to target GCV AUC0-24 h of 40-60 mg*h/L. This sometimes leads to overexposure or underexposure. This study aimed to train, test and validate machine learning (ML) algorithms for accurate GCV AUC0-24 h estimation in solid organ transplantation.

Methods: We simulated patients for different dosing regimen (900 mg/24 h, 450 mg/24 h, 450 mg/48 h, 450 mg/72 h) using two literature population pharmacokinetic models, allocating 75% for training and 25% for testing. Simulations from two other literature models and real patients provided validation datasets. Three independent sets of ML algorithms were created for each regimen, incorporating CrCL and 2 or 3 concentrations. We evaluated their performance on testing and validation datasets and compared them with MAP-BE.

Results: XGBoost using 3 concentrations generated the most accurate predictions. In testing dataset, they exhibited a relative bias of -0.02 to 1.5% and a relative RMSE of 2.6 to 8.5%. In the validation dataset, a relative bias of 1.5 to 5.8% and 8.9 to 16.5%, and a relative RMSE of 8.5 to 9.6% and 10.7% to 19.7% were observed depending on the model used. XGBoost algorithms outperformed or matched MAP-BE, showing enhanced generalization and robustness in their estimates. When applied to real patients' data, algorithms using 2 concentrations showed relative bias of 1.26% and relative RMSE of 12.68%.

Conclusions: XGBoost ML models accurately estimated GCV AUC0-24 h from limited samples and CrCL, providing a strategy for optimized therapeutic drug monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12248-025-01034-9DOI Listing

Publication Analysis

Top Keywords

gcv auc0-24 h
12
relative bias
12
relative rmse
12
machine learning
8
validation datasets
8
relative
6
estimation ganciclovir
4
ganciclovir exposure
4
exposure adults
4
adults transplant
4

Similar Publications