Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
. This study introduces a novel method for reconstructing cone beam computed tomography (CBCT) images for arbitrary orbits, addressing the computational and memory challenges associated with traditional iterative reconstruction algorithms.. The proposed method employs a differentiable shift-variant filtered backprojection neural network, optimized for arbitrary trajectories. By integrating known operators into the learning model, the approach minimizes the number of trainable parameters while enhancing model interpretability. This framework adapts seamlessly to specific orbit geometries, including non-continuous trajectories such as circular-plus-arc or sinusoidal paths, enabling faster and more accurate CBCT reconstructions.. Experimental validation demonstrates that the method significantly accelerates reconstruction, reducing computation time by over 97% compared to conventional iterative algorithms. It achieves superior or comparable image quality with reduced noise, as evidenced by a 38.6% reduction in mean squared error, a 7.7% increase in peak signal-to-noise ratio, and a 5.0% improvement in the structural similarity index measure. The flexibility and robustness of the approach are confirmed through its ability to handle data from diverse scan geometries.. This method represents a significant advancement in interventional medical imaging, particularly for robotic C-arm CT systems, enabling real-time, high-quality CBCT reconstructions for customized orbits. It offers a transformative solution for clinical applications requiring computational efficiency and precision in imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/adbb50 | DOI Listing |