98%
921
2 minutes
20
Magnesium-doped hydroxyapatite/chitosan composite coatings produced by the radio-frequency magnetron sputtering technique were exposed to 5 MeV electron beams of 8 and 30 Gy radiation doses in a linear electron accelerator. The surfaces of unirradiated layers are smooth, while the irradiated ones exhibit nano-structures with sizes that increase from 60 nm at a 8 Gy dose to 200 nm at a 30 Gy dose. Young's modulus and the stiffness of the layers decrease from 58.9 GPa and 10 µN/nm to 5 GPa and 2.2 µN/nm, respectively, when the radiation doses are increased from 0 to 30 Gy. These data suggest the diminishing of the contribution of the chitosan to the elasticity of the magnesium-doped hydroxyapatite/chitosan composite layers after electron beam irradiation. The biological capabilities of the coatings were assessed before and after their immersion in RPMI-1640 cell culture medium for 7 and 14 days, respectively, and further cultured with a MG63 cell line (ATCC CRL1427) in Dulbecco's Modified Eagle Medium supplemented with fetal bovine serum, penicillin-streptomycin, and L-glutamine. Thus, 1 µm spherical structures were developed on the surfaces of the layers exposed to a 30 Gy radiation dose and immersed for 14 days in the RPMI-1640 biological medium. The molecular structures of all the RPMI-1640 immersed samples were modified by the growth of a carbonated hydroxyapatite layer characterized by a B-type substitution, as Fourier Transform Infrared Spectroscopy revealed. The biological assay proved the increased biocompatibility of the layers kept in RPMI-1640 medium and enhanced MG63 cell attachment and proliferation. Atomic force microscopy analysis indicated the elongated fibroblastic cell morphology of MG63 cells with minor alteration at 30 Gy irradiation doses as a result of layer biocompatibility modifications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858993 | PMC |
http://dx.doi.org/10.3390/polym17040533 | DOI Listing |
Polymers (Basel)
February 2025
National Institute of Materials Physics, 077125 Magurele, Romania.
Magnesium-doped hydroxyapatite/chitosan composite coatings produced by the radio-frequency magnetron sputtering technique were exposed to 5 MeV electron beams of 8 and 30 Gy radiation doses in a linear electron accelerator. The surfaces of unirradiated layers are smooth, while the irradiated ones exhibit nano-structures with sizes that increase from 60 nm at a 8 Gy dose to 200 nm at a 30 Gy dose. Young's modulus and the stiffness of the layers decrease from 58.
View Article and Find Full Text PDFPolymers (Basel)
January 2022
National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania.
This work reports on the influence of 5 MeV electron beam radiations on the morphological features and chemical structure of magnesium-doped hydroxyapatite/chitosan composite coatings generated by the magnetron sputtering technique. The exposure to ionizing radiation in a linear electron accelerator dedicated to medical use has been performed in a controllable manner by delivering up to 50 Gy radiation dose in fractions of 2 Gy radiation dose per 40 s. After the irradiation with electron beams, the surface of layers became nano-size structured.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
June 2015
In this investigation, ultrasonication process was used for the synthesis of magnesium doped nano-hydroxyapatite (MH) (0, 1, 2, and 3 mol% of Mg concentration) particles with controlled size and surface morphology. The size of the prepared MH particles was in the range of 20-100 nm with narrow distribution. Increase in the concentration of Mg reduced the particle size distribution from 60 to 40 nm.
View Article and Find Full Text PDF