A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Human iPSC-Derived Muscle Cells as a New Model for Investigation of EDMD1 Pathogenesis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Emery-Dreifuss muscular dystrophy type 1 (EDMD1) is a rare genetic disease caused by mutations in the gene, which encodes the nuclear envelope protein emerin. Despite understanding the genetic basis of the disease, the molecular mechanism underlying muscle and cardiac pathogenesis remains elusive. Progress is restricted by the limited availability of patient-derived samples; therefore, there is an urgent need for human-specific cellular models. In this study, we present the generation and characterization of induced pluripotent stem cell (iPSC) lines derived from EDMD1 patients carrying mutations that lead to truncated or absent emerin, together with iPSCs from healthy donor. The patient-specific iPSCs exhibit stable karyotypes, maintain appropriate morphology, express pluripotency markers, and demonstrate the ability to differentiate into three germ layers. To model EDMD1, these iPSCs were differentiated into myogenic progenitors, myoblasts, and multinucleated myotubes, which represent all stages of myogenesis. Each developmental stage was validated by the presence of stage-specific markers, ensuring the accuracy of the model. We present the first iPSC-based in vitro platform that captures the complexity of EDMD1 pathogenesis during myogenesis. This model can significantly contribute to understanding disease mechanisms and develop the targeted therapeutic strategies for EDMD1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855679PMC
http://dx.doi.org/10.3390/ijms26041539DOI Listing

Publication Analysis

Top Keywords

edmd1 pathogenesis
8
edmd1
6
human ipsc-derived
4
ipsc-derived muscle
4
muscle cells
4
model
4
cells model
4
model investigation
4
investigation edmd1
4
pathogenesis emery-dreifuss
4

Similar Publications