A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Machine-Learning-Based Analysis of Resting State Electroencephalogram Signals to Identify Latent Schizotypal and Bipolar Development in Healthy University Students. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: Early and accurate diagnosis is crucial for effective prevention and treatment of severe mental illnesses, such as schizophrenia and bipolar disorder. However, identifying these conditions in their early stages remains a significant challenge. Our goal was to develop a method capable of detecting latent disease liability in healthy volunteers. : Using questionnaires examining affective temperament and schizotypal traits among voluntary, healthy university students (N = 710), we created three groups. These were a group characterized by an emphasis on positive schizotypal traits (N = 20), a group showing cyclothymic temperament traits (N = 17), and a control group showing no susceptibility in either direction (N = 21). We performed a resting-state EEG examination as part of a complex psychological, electrophysiological, psychophysiological, and laboratory battery, and we developed feature-selection machine-learning methods to differentiate the low-risk groups. : Both low-risk groups could be reliably (with 90% accuracy) separated from the control group. : Models applied to the data allowed us to differentiate between healthy university students with latent schizotypal or bipolar tendencies. Our research may improve the sensitivity and specificity of risk-state identification, leading to more effective and safer secondary prevention strategies for individuals in the prodromal phases of these disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854578PMC
http://dx.doi.org/10.3390/diagnostics15040454DOI Listing

Publication Analysis

Top Keywords

healthy university
12
university students
12
latent schizotypal
8
schizotypal bipolar
8
schizotypal traits
8
group showing
8
control group
8
low-risk groups
8
machine-learning-based analysis
4
analysis resting
4

Similar Publications