Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A red-emitting excited-state intramolecular charge transfer pyridinium dye, [4-((1E,3E)-4-(4-(dimethylamino)phenyl)buta-1,3-dien-1-yl)-1-methylpyridin-1-ium] (DAPBMP), was synthesized and characterized using NMR and ESIMS studies. Binding interaction between dye DAPBMP and genomic DNA were investigated using steady-state and time-resolved spectroscopic methods. The thermodynamics of the interaction process were characterized using isothermal titration calorimetry (ITC) which reveals the key role of the hydrophobic effect and electrostatic interaction between the positive charged dye and the negatively charged polyphosphate of DNA backbone. The binding of dye to the minor groove of the DNA double helix is confirmed by circular dichroism spectroscopy and molecular docking simulation study. The binding interaction is found to be strongly dependent on the ionic strength of the medium as demonstrated by a systematic study in the presence of various concentrations of NaCl. A detailed calorimetric study shows that polyelectrolytic contribution, ΔGpe, (a measure of the role of electrostatic force) to the total free energy change (ΔG) of interaction progressively decreases with increasing ionic strength of the medium due to weakening of the DAPBMP:DNA binding by screening of the electrostatic charges. The fluorescence of DAPBMP exhibits a remarkable emission enhancement of almost 15 times when the viscosity of the water-propylene glycol system increases. Fluorescent microscopy was performed with C2C12 mouse skeletal myoblast and A549 lung cancer cells in the presence of DAPBMP dye. The dye passed through the C2C12 cell membrane and binds the negatively charged nucleic acids, essentially double-stranded DNA which made the nuclear puncta along with perinuclear located mitochondria.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43630-025-00693-zDOI Listing

Publication Analysis

Top Keywords

ionic strength
12
binding interaction
8
negatively charged
8
strength medium
8
dye
7
interaction
6
dna
5
photophysical thermodynamic
4
thermodynamic landscape
4
landscape interaction
4

Similar Publications

Recent Advances in Oral Gel Drug Delivery System: A Polymeric Approach.

Drug Dev Ind Pharm

September 2025

Department of Pharmaceutics, Mallige College of Pharmacy, Silvepura, Bangalore -560090.

ObjectivesThis review aims to explore gelling drug delivery systems with emphasis on formulation strategies, gelation mechanisms, administration routes, and therapeutic benefits. It also seeks to understand the role of different polymers in achieving optimal gelation and drug release profiles. Additionally, the review aims to identify current research gaps and highlight potential areas for future development and clinical translation.

View Article and Find Full Text PDF

Messenger ribonucleic acid (mRNA), a promising tool in vaccine and therapeutic development, is reliant on intact mRNA delivery into target cells. Given its susceptibility to degradation, ensuring its stability is crucial, necessitating rigorous quality control throughout the product life cycle. This study presents an ion-pair reverse-phase liquid chromatography method that enables rapid and direct mRNA extraction from lipid nanoparticles, facilitated by using a surfactant in the sample preparation.

View Article and Find Full Text PDF

Deep-sea salt as a novel additive for 3D-printed surimi: boosting protein bonding, antioxidant capacity, and digestibility.

Food Chem X

August 2025

College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 5

Enhancing both structural integrity and nutritional properties is crucial for developing a functional three-dimensional (3D)-printed surimi formulation. Herein, deep-sea salt was used as a substitute for conventional salt to develop 3D-printed surimi. The physicochemical properties, sensory scores, microstructural examinations, chemical bonding analysis, digestion studies, and antioxidant activity of the 3D-printed surimi were systematically evaluated.

View Article and Find Full Text PDF

In this study, tannic acid (TA) was applied to remodel the structure of quercetin-loaded oat globulin fibrils (UF-Que), to form novel fibril-based composite hydrogels (UF-Que-TA) to encapsulate Que. The hydrogels were prepared by varying the [TA]/[UF] ratio to investigate the impact of TA on gelation behavior, microstructure, molecular interactions, and stability of Que. Physicochemical results indicated that the incorporation of TA significantly enhanced the gel strength and promoted non-covalent interactions including hydrogen bonding, hydrophobic interactions, and ionic interactions.

View Article and Find Full Text PDF

Background: Serum copeptin (sCoP) is used as a surrogate for plasma arginine vasopressin (pAVP) measurement in humans.

Objective: To measure pAVP and sCoP at rest and after osmotic- and non-osmotic stimulation testing in dogs.

Animals: Eight young castrated/spayed healthy research Beagles, eight young intact dogs, and eight old neutered healthy client-owned dogs.

View Article and Find Full Text PDF