98%
921
2 minutes
20
Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by "torsional entrainment" generated by DNA rotation. We report that release of entrainment by co-transcriptional 3' end cleavage, is permissive for relative movement between polymerases, promoting pausing and backtracking. Subsequent termination (polymerase release) is facilitated by the 5' exonuclease Rat1 (Xrn2) and backtracked transcript cleavage by the RNA polymerase I (RNAPI) subunit Rpa12. These activities are reproduced in vitro. Short nascent transcripts close to the transcriptional start site, combined with nascent transcript folding energy, similarly facilitate RNAPI pausing. Nascent, backtracked transcripts at pause sites are terminated by forward and reverse "torpedoes": Rat1 and the exosome cofactor Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP), respectively. Topoisomerase 2 localizes adjacent to RNAPI pause sites, potentially allowing continued elongation by downstream polymerases. Mathematical modeling supported substantial premature termination. These basic insights into transcription in vivo will be relevant to many systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2025.115325 | DOI Listing |
Mol Cell
September 2025
The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia; Peter MacCallum Cancer Centre, Laboratory Research Division, Parkville, VIC 3052, Australia. Electronic address:
Controlled gene expression is achieved through the intricate regulation of RNA polymerase II (Pol II) progression through transcription-cycle checkpoints. While the contribution of CDK9 for Pol II pause-release is well established, the requirement for other cyclin-dependent kinases (CDKs) has not been fully elucidated. In this study, we propose a critical role for CDK11 in the Pol II pausing-to-elongation transition at a checkpoint that precedes and is independent from CDK9.
View Article and Find Full Text PDFBiochem Soc Trans
August 2025
Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada.
Neurons require local protein synthesis at synapses to control their proteome in response to local inputs. Work over the past two decades has revealed that neurons can use a specialized mechanism to transfer mRNAs and ribosomes to local sites in addition to canonical mechanisms used in many cell types. Neurons initiate translation on the ribosomes in the cellular soma, pause the process, and then package these stalled ribosomes into structures known as 'neuronal RNA granules' that are transported to synapses.
View Article and Find Full Text PDFNucleic Acids Res
August 2025
The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, 33458, United States.
Eradicating HIV-1 is complicated by latently infected CD4+T cells harboring dormant proviruses capable of reactivation. Through a pooled shRNAmir screen targeting human chromatin regulators, we identified EP400, a member of the p400 chromatin remodeling complex, as a potent inhibitor of HIV-1 transcription in Jurkat and primary CD4+T cells. EP400 and its complex partner DMAP1 co-localize with paused RNA Polymerase II (RNAPII) at transcriptional start sites of protein-coding genes and their depletion modestly reduced RNAPII pausing.
View Article and Find Full Text PDFbioRxiv
July 2025
Department of Molecular and Cell Biology, University of California, Berkeley, CA USA.
Fatty acids are trafficked between organelles to support membrane biogenesis and act as signaling molecules to rewire cellular metabolism in response to starvation, overnutrition, and environmental cues. Mitochondria are key cellular energy converters that harbor their own multi-copy genome critical to metabolic control. In homeostasis, mitochondrial DNA (mtDNA) synthesis is coupled to mitochondrial membrane expansion and division at sites of contact with the endoplasmic reticulum (ER).
View Article and Find Full Text PDFJ Am Geriatr Soc
July 2025
Vanderbilt University School of Nursing, Nashville, Tennessee, USA.
Background: Geroscience explores aging at the cellular level. We developed a lay-friendly science communication intervention (MitoFit) that addresses healthy aging through mitochondrial fitness. The intervention aims to promote physical activity by educating aging adults about optimizing mitochondrial function to promote healthy aging and prevention of chronic disease.
View Article and Find Full Text PDF