A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Genomics-Enabled Mixed-Stock Analysis Uncovers Intraspecific Migratory Complexity and Detects Unsampled Populations in a Harvested Fish. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The contributions of distinct populations to annual harvests provide key insights to conservation, especially in migratory species that return to specific reproductive areas. In this context, genetic stock identification (GSI) requires reference samples from source populations to assign harvested individuals, yet sampling might be challenging as reproductive areas could be remote and/or unknown. To investigate intraspecific variation in walleye (Sander vitreus) populations harvested in two large lakes in northern Quebec, we used genotyping-by-sequencing data to develop a panel of 303 filtered single-nucleotide polymorphisms. We then genotyped 1465 fish and assessed individual migration distances from GPS coordinates of capture locations. Samples were assigned to a source population using two methods, one requiring allele frequencies of known populations (RUBIAS) and the other without prior knowledge (STRUCTURE). Individual assignments to a known population reached 93% consistency between both methods in the main lake where we identified all five major source populations. However, the analyses also revealed up to three small unsampled populations. Furthermore, populations were characterised by large differences in average migration distance. In contrast, assignment consistency reached 99% in the neighbouring lake and walleye were assigned with high confidence to two populations having a similar distribution throughout the lake. The complex population structure and migration patterns in the main lake suggest a more heterogeneous habitat and thus, greater potential for local adaptation. This study highlights how combining analytical approaches can inform the robustness of GSI results in a given system and detect intraspecific diversity and complexity relevant for conservation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.17707DOI Listing

Publication Analysis

Top Keywords

populations
9
unsampled populations
8
populations harvested
8
reproductive areas
8
source populations
8
main lake
8
genomics-enabled mixed-stock
4
mixed-stock analysis
4
analysis uncovers
4
uncovers intraspecific
4

Similar Publications