A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optimizing Bi-LSTM networks for improved lung cancer detection accuracy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lung cancer remains a leading cause of cancer-related deaths worldwide, with low survival rates often attributed to late-stage diagnosis. To address this critical health challenge, researchers have developed computer-aided diagnosis (CAD) systems that rely on feature extraction from medical images. However, accurately identifying the most informative image features for lung cancer detection remains a significant challenge. This study aimed to compare the effectiveness of both hand-crafted and deep learning-based approaches for lung cancer diagnosis. We employed traditional hand-crafted features, such as Gray Level Co-occurrence Matrix (GLCM) features, in conjunction with traditional machine learning algorithms. To explore the potential of deep learning, we also optimized and implemented a Bidirectional Long Short-Term Memory (Bi-LSTM) network for lung cancer detection. The results revealed that the highest performance using hand-crafted features was achieved by extracting GLCM features and utilizing Support Vector Machine (SVM) with different kernels, reaching an accuracy of 99.78% and an AUC of 0.999. However, the deep learning Bi-LSTM network surpassed both methods, achieving an accuracy of 99.89% and an AUC of 1.0000. These findings suggest that the proposed methodology, combining hand-crafted features and deep learning, holds significant promise for enhancing early lung cancer detection and ultimately improving diagnosis systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849851PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0316136PLOS

Publication Analysis

Top Keywords

lung cancer
24
cancer detection
16
hand-crafted features
12
deep learning
12
glcm features
8
bi-lstm network
8
lung
6
cancer
6
features
6
optimizing bi-lstm
4

Similar Publications