A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Neural dynamics of proactive and reactive cognitive control in medial and lateral prefrontal cortex. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gol-directed behavior requires adjusting cognitive control to both react to and prepare for conflict. Previous work indicates theta oscillations and population activity in dorsomedial prefrontal cortex (dmPFC) and dorsolateral prefrontal cortex (dlPFC) are critical for reactive control. However, the neural mechanisms supporting proactive control are less clear. Here, we investigated the neural basis of behavioral adaptations when control is prepared in anticipation of conflict using intracranial EEG (iEEG) in dmPFC and dlPFC during a Stroop task where conflict frequency was manipulated across blocks. We observed canonical conflict-driven increases in dmPFC theta and in dmPFC and dlPFC local population activity, as indexed by high frequency activity (HFA). Conflict also suppressed theta power in both regions after the response, accentuated a pre-response beta desynchronization selectively in dlPFC, and increased a post-response beta rebound in both regions. Importantly, we identified a pre-trial marker of proactive control where dmPFC theta power increased before trials when conflict was expected, and theta, beta, and HFA conflict signals in both regions were enhanced when conflict was rare and diminished when conflict was common. These findings reveal shared HFA but dissociable oscillatory dynamics in dmPFC and dlPFC during reactive conflict processing, highlight pre-trial dmPFC theta as a potential substrate for proactive control, and refine the roles of dmPFC and dlPFC in control adaptations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844492PMC
http://dx.doi.org/10.1101/2025.02.12.637987DOI Listing

Publication Analysis

Top Keywords

dmpfc dlpfc
16
prefrontal cortex
12
proactive control
12
dmpfc theta
12
conflict
9
control
8
cognitive control
8
population activity
8
dmpfc
8
hfa conflict
8

Similar Publications