Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Previous automated models inaccurately scored non-standardized plaque images. The objectives were to develop and test automated image selection and intraoral plaque-scoring (primary outcome measure in a prevention trial for preschoolers).

Methods: Evaluating 1650 plaque-disclosed primary teeth (teeth D, E, F, G) from 435 photographs from UCSF/UCLA clinical trials, data were cleaned, transformed, and modeled with statistical and machine learning (ML) algorithms; data visualizations utilized Jupyter Notebooks, Python, OpenCV, and Sci-kit Learn libraries, with Laplacian filter preprocessing. Image selection and plaque-scoring used 8 ML classification models. Mean plaque-scoring used 8 ML regression models. Models were tuned with 80:20 train:test split, stratified 5-fold cross-validation (5-CV) (unstratified in regression models), and hyperparameter optimization. Area-under-the-curve receiver operating characteristic (AUC-ROC) curve and R determined the best classification and regression models, respectively, compared to calibrated dentist researcher ratings. Training time was a secondary metric. Manual segmentation used Photoshop's lasso tool. Average and dominant hue, saturation, and brightness values were features for training plaque-scoring algorithms.

Results: Best performing models were: Support Vector Machine-Gaussian for image selection, 5-CV AUC-ROC of 0.99 and 0.76s of training time; Gradient-Boosting classification and regression models for individual teeth (5-CV AUC-ROC of 0.99 with 105s training); and mean plaque-scoring algorithms (5-CV R of 0.72 with 1415s training).

Conclusions: Accurate automated plaque-scoring is attainable without the high computational and financial costs of deep learning (DL) models. Automated plaque-scoring is attainable with little user-manipulation.

Practical Implications: Implementing automated tooth segmentation and synthetic sample generation with DL training may strengthen reliability, validity, and efficiency for clinical, research, and teledentistry applications by eliminating manual image preprocessing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845216PMC
http://dx.doi.org/10.1080/19424396.2024.2422146DOI Listing

Publication Analysis

Top Keywords

regression models
16
image selection
12
models
10
classification regression
8
training time
8
training plaque-scoring
8
5-cv auc-roc
8
auc-roc 099
8
automated plaque-scoring
8
plaque-scoring attainable
8

Similar Publications

Warfarin is a widely used vitamin K antagonist (VKA) with known pleiotropic effects beyond anticoagulation. Preclinical and case-control evidence suggests that warfarin may affect hematopoiesis, but longitudinal human evidence is lacking. To explore this potential effect, we conducted a post-hoc analysis of participants in the Hokusai-VTE and ENGAGE AF-TIMI 48 trials, which randomized patients to warfarin or the direct oral anticoagulant edoxaban with routine laboratory testing at predefined follow-up visits.

View Article and Find Full Text PDF

Background: Out-of-hospital cardiac arrests (OHCAs) are a leading cause of death worldwide, yet first responder apps can significantly improve outcomes by mobilizing citizens to perform cardiopulmonary resuscitation before professional help arrives. Despite their importance, limited research has examined the psychological and behavioral factors that influence individuals' willingness to adopt these apps.

Objective: Given that first responder app use involves elements of both technology adoption and preventive health behavior, it is essential to examine this behavior from multiple theoretical perspectives.

View Article and Find Full Text PDF

Purpose: Expanding high-risk human papillomavirus (HPV) vaccine coverage in resource-constrained settings is critical to bridging the cervical cancer gap and achieving the global action plan for elimination. Mobile health (mHealth) technology via short message services (SMS) has the potential to improve HPV vaccination uptake. The mHealth-HPVac study evaluated the effectiveness of mHealth interventions in increasing HPV vaccine uptake among mothers of unvaccinated girls aged 9-14 years in Lagos, Nigeria.

View Article and Find Full Text PDF

Purpose: To investigate associations among expanded field swept-source optical coherence tomography angiography (SS-OCTA) biomarkers and the development of tractional retinal detachment (TRD) in patients with proliferative diabetic retinopathy (PDR).

Methods: Patients with PDR without TRD at baseline were imaged with SS-OCTA. Quantitative and qualitative OCTA metrics were independently evaluated by two trained graders.

View Article and Find Full Text PDF

Objective: To evaluate depression in postmenopausal women and to explore the relationship between age at menopause, hormone therapy, and depression, while also identifying potential mediators that may explain these associations.

Methods: This cross-sectional study analyzed data from National Health and Nutrition Examination Survey (NHANES) (2005-2020) for women older than 60 years who completed the Patient Health Questionnaire 9 (PHQ-9) depression questionnaire (n=7,027). Exposures included age at menopause and self-reported hormone therapy; the outcome was depression severity (PHQ-9 ≥10).

View Article and Find Full Text PDF