A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Causal relationship between gut microbiota and ageing: A multi-omics Mendelian randomization study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Observational studies and clinical trials have suggested a connection between gut microbiota and aging. However, the causal relationship between them remains undetermined.

Objectives: This study aimed to use bidirectional two-sample Mendelian randomization (TSMR) analysis to explore the causal relationship between gut microbiota and aging.

Methods: Summary statistics from genome-wide association studies (GWAS) on gut microbiota and seven aging-related phenotypes were employed for TSMR analysis. Reverse Mendelian randomization (MR) analysis was performed to assess the potential for reverse causality. Additionally, the relationship between Akkermansia muciniphila and inflammation-related proteins and metabolites was further investigated. The effects of Akkermansia muciniphila on aging were also examined in Caenorhabditis elegans by measuring both lifespan and healthspan.

Results: MR analysis of 207 microbial taxa and seven aging phenotypes revealed 44 causal relationships between the gut microbiota and aging. Akkermansia muciniphila was found to be causally linked to several aging-related traits, including mvAge, appendicular lean mass, and grip strength (P < 0.05). Reverse MR analysis identified 23 causal relationships, but no bidirectional causality was observed. Moreover, Akkermansia muciniphila is causally related to ST1A1, taurine bile acid, and mannose (P < 0.05). In Caenorhabditis elegans, treatment with Akkermansia muciniphila significantly extended lifespan (P < 0.05) and improved mobility in aging nematodes.

Conclusion: TSMR analysis uncovers multiple potential causal links between gut microbiota and aging, particularly Akkermansia muciniphila. Experimental results support its role in alleviating aging. This study provides a strong foundation for future research on gut microbiota's role in aging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.archger.2025.105765DOI Listing

Publication Analysis

Top Keywords

gut microbiota
24
akkermansia muciniphila
24
causal relationship
12
mendelian randomization
12
microbiota aging
12
tsmr analysis
12
relationship gut
8
aging
8
caenorhabditis elegans
8
causal relationships
8

Similar Publications