98%
921
2 minutes
20
Brain tumors are commonly treated with radiotherapy, but the efficacy of the treatment is limited by its toxicity to the normal tissue including post-irradiation contrast enhanced lesions often linked to necrosis. The poorly understood mechanisms behind such brain lesions were studied using cerebral organoids. Here we show that irradiation of such organoids leads to dose-dependent growth retardation and formation of liquid-filled cavities but is not correlated with necrosis. Instead, the radiation-induced changes comprise of an enhancement of cortical hem markers, altered neuroepithelial stem cell differentiation, and an increase of ZO1/AQP1/CLDN3-choroid plexus (CP)-like structures accompanied by an upregulation of IGF2 mRNA, known to be expressed in CP and cerebrospinal fluid. The altered differentiation is attributed to changes in the WNT/BMP signaling pathways. We conclude that aberrant CP formation can be involved in radiation-induced brain lesions providing additional strategies for possible countermeasures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846864 | PMC |
http://dx.doi.org/10.1038/s42003-025-07736-2 | DOI Listing |
Neurosci Biobehav Rev
September 2025
Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy. Electronic address:
Takotsubo Cardiomyopathy (TC) is a transient cardiomyopathy secondary to emotional and/or physical stress. While its precise aetiology remains unclear, some evidence suggests a possible role for the insular cortex (IC), which modulates cardiovascular responses to stress. The IC is a key viscerosensory and visceromotor hub with widespread connections, and is implicated in interoceptive processing, emotional regulation, and autonomic control.
View Article and Find Full Text PDFStem Cell Reports
September 2025
Neural Stem Cells and Neuroimaging Group, Department of Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece. Electronic address:
In the adult brain, neural stem cells (NSCs) constitutively generate new neurons in specific neurogenic domains. Recent research has unveiled reactive neurogenesis, whereby brain injury triggers NSC activation, enhancing their differentiation potential and guiding progeny to injured areas. Our study provides evidence of alternative migration pathways for newborn neurons in the mouse subcortical forebrain, revealed by administration of a chemotherapeutic agent.
View Article and Find Full Text PDFBrain
September 2025
Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain.
Primary coenzyme Q (CoQ) deficiency is a mitochondrial disorder with variable clinical presentation and limited response to standard CoQ10 supplementation. Recent studies suggest that 4-hydroxybenzoic acid (4-HBA), a biosynthetic precursor of CoQ, may serve as a substrate enhancement treatment in cases caused by pathogenic variants in COQ2, a gene encoding a key enzyme in CoQ biosynthesis. However, it remains unclear whether 4-HBA is required throughout life to maintain health, whether it offers advantages over CoQ10 treatment, and whether these findings are translatable to humans.
View Article and Find Full Text PDFAnn Neurol
September 2025
Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
Objective: Impaired ability to induce stepping after incomplete spinal cord injury (SCI) can limit the efficacy of locomotor training, often leaving patients wheelchair-bound. The cuneiform nucleus (CNF), a key mesencephalic locomotor control center, modulates the activity of spinal locomotor centers via the reticulospinal tract. Even with severe corticospinal damage, the widely distributed reticulospinal fibers frequently cross the lesion, and lumbosacral spinal locomotor centers remain responsive.
View Article and Find Full Text PDFStroke
September 2025
Brain Language Laboratory, Freie Universität Berlin, Germany (A.-T.P.J., M.R.O., A.S., F.P.).
Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.
View Article and Find Full Text PDF