A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Prevalence of CNVs on the X chromosome in patients with neurodevelopmental disorders. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The X chromosome is enriched with genes related to brain development, and the hemizygous state of these genes in men causes some difficulties in the clinical interpretation of copy number variations (CNVs). In this study, we present data on the frequency and spectrum of CNVs on the X chromosome in a cohort of patients with neurodevelopmental disorders (NDDs).

Methods: Chromosomal microarray analysis was performed for 1175 patients with NDDs. CNVs were confirmed by real-time quantitative PCR. X chromosome inactivation was analysed by methyl-sensitive PCR. To determine the pathogenic significance of the CNVs, several criteria, including the origin (inherited or de novo), variant type (microdeletion or microduplication), and X chromosome inactivation pattern in asymptomatic and symptomatic carriers, were considered. Additionally, the spectrum, size and molecular bases of copy number changes in genes or gene regions involved in the development of the pathological phenotype in each patient were considered.

Results: CNVs on the X chromosome were identified in 33 patients (2.8%). Duplications and triplications (27 cases) were four times more common than deletions (6 cases). In 74% of patients, CNVs were of maternal origin; in 10% they were of paternal origin; and in 16% they arose de novo. The frequency of skewed X inactivation among family members who were healthy carriers of pathogenic and likely pathogenic CNVs and variants of uncertain significance (VUSs) on the X chromosome was 23%. For the first time, we reported several CNVs, including a pathogenic microdeletion at Xq26.1q26.2 involving the ARHGAP36 gene and a microduplication at Xp22.2 involving the OFD1 gene, CONCLUSIONS: This study expands on the frequency and spectrum of CNVs in patients with NDDs. Pathogenic variants on the X chromosome were present in 15% of cases, LP in 12%, VUS in 57%, and LB in 16% of cases. Previously unreported CNVs aid in the identification of new structural variants and genes associated with X-linked intellectual disability. We propose to consider the X-chromosome inactivation status when assessing the pathogenetic significance of CNVs using the ACMG algorithm (American College of Medical Genetics).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846235PMC
http://dx.doi.org/10.1186/s13039-025-00703-wDOI Listing

Publication Analysis

Top Keywords

cnvs chromosome
12
cnvs
11
chromosome
8
patients neurodevelopmental
8
neurodevelopmental disorders
8
copy number
8
frequency spectrum
8
spectrum cnvs
8
patients ndds
8
chromosome inactivation
8

Similar Publications