A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Correspondence between thalamic injury-induced changes in resting-state fMRI of monkeys and their sensorimotor behaviors and neural activities. | LitMetric

Correspondence between thalamic injury-induced changes in resting-state fMRI of monkeys and their sensorimotor behaviors and neural activities.

Neuroimage Clin

Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, USA; Department of Biomedical Engineering, Vanderbilt University, USA; Department of Physics and Astronomy, Vanderbi

Published: May 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Resting state functional MRI (rsfMRI) exploits variations in blood-oxygenation-level-dependent (BOLD) signals to infer resting state functional connectivity (FC) within and between brain networks. However, there have been few reports quantifying and validating the results of rsfMRI analyses with other metrics of brain circuits. We measured longitudinal changes in FC both within and between brain networks in three squirrel monkeys after focal lesions of the thalamic ventroposterior lateral nucleus (VPL) that were intended to disrupt the input to somatosensory cortex and impair manual dexterity. Local field potential signals were recorded to assess electrophysiological changes during each animal's recovery, and behavioral performances were measured longitudinally using a sugar-pellet grasping task. Finally, end-point histological evaluations were performed on brain tissue slices to quantify the VPL damage. The rsfMRI data analysis showed significant decrease in FC measures both within and between networks immediately post-injury, which started to recover at different time-points for each animal. The trajectories of FC recovery for each animal mirrored their individual behavioral recovery time-courses. Electrophysiological measurements of inter-electrode coherences and end-point histological measures also aligned well with the graded injury effects measured using rsfMRI-based FC. A simple algorithm employing FC measures from the somatosensory network could accurately predict each monkeys' behavioral recovery timeframe after four weeks post-injury. Whole brain between-network FC measures further revealed that the injury effects were not limited to thalamocortical connections but were rather more widespread. Overall, this study provides evidence of the validity of rsfMRI based FC measures as indicators of the functional integrity and behavioral relevance following an injury to a specific brain circuit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889736PMC
http://dx.doi.org/10.1016/j.nicl.2025.103753DOI Listing

Publication Analysis

Top Keywords

resting state
8
state functional
8
brain networks
8
end-point histological
8
behavioral recovery
8
injury effects
8
brain
6
measures
5
correspondence thalamic
4
thalamic injury-induced
4

Similar Publications