Immune Cell Engagers: Advancing Precision Immunotherapy for Cancer Treatment.

Antibodies (Basel)

Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea.

Published: February 2025


Article Synopsis

  • Immune cell engagers (ICEs) are a new type of cancer therapy that activates the immune system to target tumors more effectively by engaging various immune cells like T cells and NK cells.
  • The field is primarily driven by T-cell engagers (TCEs), especially bispecific T-cell engagers (BiTEs), which have seen innovations that enhance their effectiveness against different cancer types.
  • Though ICEs have shown promise, challenges such as toxicity and resistance remain, but ongoing research indicates their potential to revolutionize personalized cancer treatments and improve outcomes.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Immune cell engagers (ICEs) are an emerging class of immunotherapies designed to harness the immune system's anti-tumor potential through precise targeting and activation of immune effector cells. By engaging T cells, natural killer (NK) cells, and phagocytes, ICEs overcome challenges such as immune evasion and MHC downregulation, addressing critical barriers in cancer treatment. T-cell engagers (TCEs), led by bispecific T-cell engagers (BiTEs), dominate the field, with innovations such as half-life-extended BiTEs, trispecific antibodies, and checkpoint inhibitory T-cell engagers driving their application in hematologic and solid malignancies. NK cell engagers (NKCEs) and phagocyte cell engagers (PCEs) are rapidly progressing, drawing on NK cells' innate cytotoxicity and macrophages' phagocytic abilities to target tumors, particularly in immunosuppressive microenvironments. Since the FDA approval of Blinatumomab in 2014, ICEs have transformed the oncology landscape, with nine FDA-approved products and numerous candidates in clinical trials. Despite challenges such as toxicity, resistance, and limited efficacy in solid tumors, ongoing research into advanced platforms and combination therapies highlights the growing potential of ICEs to provide personalized, scalable, and effective cancer treatments. This review investigates the mechanisms, platforms, research trends, and clinical progress of ICEs, emphasizing their pivotal role in advancing precision immunotherapy and their promise as a cornerstone of next-generation cancer therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11843982PMC
http://dx.doi.org/10.3390/antib14010016DOI Listing

Publication Analysis

Top Keywords

cell engagers
16
t-cell engagers
12
immune cell
8
advancing precision
8
precision immunotherapy
8
cancer treatment
8
engagers
7
immune
5
ices
5
engagers advancing
4

Similar Publications

How I treat Ph+ acute lymphoblastic leukemia.

Future Oncol

September 2025

Division of Leukemia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is characterized by the fusion gene which produces a constitutively active tyrosine kinase which drives disease pathogenesis and is associated with resistance to conventional chemotherapy. Intensive cytotoxic chemotherapy followed by allogeneic hematopoietic stem cell transplantation (HSCT), the historical treatment paradigm for Ph+ ALL, was associated with poor outcomes. The introduction of inhibitors of ABL1 revolutionized the treatment of Ph+ ALL.

View Article and Find Full Text PDF

Blinatumomab is a bispecific T-cell engager that has recently transformed front-line treatment for many patients with Philadelphia chromosome (Ph)-negative B-cell acute lymphoblastic leukemia (B-ALL). It was originally studied in relapsed/refractory disease, then moved to targeting measurable residual disease (MRD), and has since been shown to improve outcomes for almost every age group when added to consolidation chemotherapy. The evidence supporting blinatumomab is most robust in adult and standard-risk pediatric age groups, but its benefit in adolescents and young adults and high-risk pediatric patients is not yet understood.

View Article and Find Full Text PDF

Bispecific T-cell engager therapy for multiple myeloma.

Best Pract Res Clin Haematol

September 2025

Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.

With upfront use of triplet- and quadruplet-based regimens coupled with autologous stem cell transplant (ASCT) and maintenance lenalidomide, a high proportion of multiple myeloma (MM) patients are achieving deep and durable responses. Yet, myeloma invariably relapses, with refractoriness to one or more drugs at first relapse. This therapeutic gap has been partially filled by T-cell engager (TCE) therapies that have demonstrated remarkable response rates and prolonged remissions in heavily pretreated patients with MM, providing off-the-shelf immunotherapy options leading to the U.

View Article and Find Full Text PDF

Introduction: Tarlatamab is a bispecific T-cell engager (BiTE) immunotherapy that binds delta-like ligand 3 on the surface of small cell lung cancer (SCLC) cells and CD3 on T cells, facilitating T cell-mediated cancer cell lysis. In the primary analysis of the phase 2 DeLLphi-301 study (NCT05060016), tarlatamab showed a favourable benefit-to-risk profile with durable objective responses and promising survival outcomes in patients with previously treated SCLC. Here, phase 2 data for the Asia region subgroup are presented.

View Article and Find Full Text PDF

Genomic antigen loss is a recurring mechanism of resistance to chimeric antigen receptor T-cell (CAR-T) and T-cell engagers (TCE) in relapsed/refractory multiple myeloma (RRMM). Yet, it remains unclear whether these events are acquired under treatment or merely selected from pre-existing, undetectable clones. By leveraging chemotherapy mutational signatures as temporal barcodes within whole genome sequencing data, we could time genomic antigen escape in 4 out of 11 RRMM patients.

View Article and Find Full Text PDF