98%
921
2 minutes
20
Colorectal cancer liver metastases (CRLM) are the primary cause of mortality in colorectal cancer (CRC) patients, highlighting the importance of understanding the underlying mechanisms. The tumor microenvironment (TME) and its interaction with tumor cells play a crucial role in CRLM progression. Notably, the stability and peak levels of tumor-derived exosomal miRNAs facilitate intercellular communication in the TME. Hepatic stellate cells (HSCs), key liver mesenchymal cells, constitute about 33% of the liver's nonsolid cell population and exhibit plasticity. However, the specific role of tumor-derived exosomal miRNAs in the crosstalk between HSCs and tumor cells during the CRLM process remains unclear. We studied CRC-secreted exosomal miR-1246 and its impact on HSCs, as well as its effects on CRC cell proliferation and metastasis. Our findings demonstrate that CRC-secreted exosomal miR-1246 can be internalized by HSCs, leading to their activation and facilitating the metastatic potential of CRC cells. Mechanistically, exosomal miR-1246 targets INSIG1, resulting in SREBP2 nucleation and cholesterol metabolism alterations. This accumulation of free cholesterol (FC) regulates the TLR4/NF-κB/TGF-β pathway, promoting HSC activation. Activated HSCs, in turn, enhance liver metastasis of CRC cells through the TNFSF13/TNFRSF13B axis. Our study reveals the role of CRC-secreted exosomal miR-1246 in triggering HSC activation and reprogramming the TME, ultimately facilitating liver metastasis in CRC patients. Exosomal miR-1246 could serve as a potential non-invasive biomarker for predicting colorectal cancer liver metastasis, enhancing our understanding of CRC-associated liver metastases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841005 | PMC |
http://dx.doi.org/10.1186/s10020-025-01112-w | DOI Listing |
Int J Mol Sci
August 2025
Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China.
Inflammatory bowel disease (IBD), a chronic inflammatory disorder with relapsing/remitting characteristics, lacks reliable non-invasive biomarkers for accurate diagnosis and longitudinal monitoring. This study explored salivary exosomal miRNAs as potential biomarkers to address this unmet clinical need. Using discovery (24 IBD patients [11 active, 13 remission] and 6 healthy controls [HCs]) and validation cohorts (102 IBD patients [53 active, 49 remission] and 18 HCs), we analyzed miRNA profiles via reverse transcription quantitative PCR (RT-qPCR).
View Article and Find Full Text PDFJ Exp Clin Cancer Res
July 2025
Microenvironment and Biomarkers in Solid Tumors Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
Breast cancer (BC) remains a leading cause of cancer-related mortality in women, with complex mechanisms driving its initiation, progression, and resistance to therapy. In recent years, the tumor microenvironment (TME) has gained attention for its critical role in shaping tumor behavior, where small extracellular vesicles (small EVs) have emerged as key mediators of intercellular communication. These vesicles carry a diverse cargo of proteins, lipids, DNA, and various non-coding RNAs-such as miR-21, miR-155, and miR-1246-mirroring the molecular status of their originating cells.
View Article and Find Full Text PDFInt J Biol Sci
July 2025
Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110002, China.
The tumor microenvironment (TME) is dynamically shaped by interactions between tumor cells, immune cells, and stromal components. Among these, tumor-associated macrophages (TAMs) play dual roles in tumor progression. Exosomes are key mediators of intercellular communication and are crucial for modulating macrophage polarization.
View Article and Find Full Text PDFClin Transl Sci
June 2025
Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Exosomal microRNAs (miRNAs) are candidates for liquid biopsies. Organoid culture systems enable long-term expansion of the colon epithelium. This study evaluated exosomal miRNAs from colorectal cancer organoids for liquid biopsy.
View Article and Find Full Text PDFJ Adv Res
May 2025
State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China. Electronic address:
Introduction: Adipose stem cells (ADSC) have demonstrated therapeutic potential in ameliorating obesity and metabolic disorders, with their exosomes showing comparable therapeutic effects. However, the underlying molecular mechanism remains incompletely understood. Furthermore, the limited availability and inherent heterogeneity of primary ADSC present substantial challenges for consistent therapeutic outcomes.
View Article and Find Full Text PDF