98%
921
2 minutes
20
Adhesion of E. coli to the urinary tract epithelium is a critical step in establishing urinary tract infections. FimH is an adhesin positioned on the fimbrial tip which binds to mannosylated proteins on the urinary tract epithelium via its lectin domain (FimHLD). FimH is of interest as a target of vaccines to prevent urinary tract infections (UTI). Previously, difficulties in obtaining purified recombinant FimH from E. coli along with the poor inherent immunogenicity of FimH have hindered the development of effective FimH vaccine candidates. To overcome these challenges, we have devised a novel production method using mammalian cells to produce high yields of homogeneous FimH protein with comparable biochemical and immunogenic properties to FimH produced in E. coli. Next, to optimize conformational stability and immunogenicity of FimH, we used a computational approach to design improved FimH mutants and evaluated their biophysical and biochemical properties, and murine immunogenicity using a bacterial adhesion inhibition assay. This approach identified an immunogenic FimH variant (FimH-donor-strand complemented with FimG peptide 'triple mutant', FimH-DSG TM) capable of blocking bacterial adhesion that is produced at high yields in mammalian cells. By x-ray crystallography, we confirmed that the stabilized structure of the FimHLD in FimH-DSG TM is similar to native FimH on the fimbrial tip. Characterization of monoclonal antibodies elicited by FimH-DSG that can block bacterial binding to mannosylated surfaces identified 4 non-overlapping binding sites whose epitopes were mapped via a combinatorial cryogenic electron microscopy approach. Novel inhibitory epitopes in the lectin binding FimH were identified, revealing diverse functional mechanisms of FimH-directed antibodies with relevance to FimH-targeted UTI vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12136410 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1012325 | DOI Listing |
BMC Infect Dis
September 2025
Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
Background: Escherichia coli ST131 and clade H30Rx are the most prevalent extended-spectrum β-lactamase-producing E. coli (ESBL-EC) causing bacteremia and urinary tract infections globally and in Sweden. Previous studies have linked ST131-H30Rx with septic shock and mortality, as well as prolonged carriage.
View Article and Find Full Text PDFBMC Infect Dis
September 2025
Department of Laboratory Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
Background: Serratia marcescens is an opportunistic pathogen increasingly associated with healthcare-associated infections and rising antimicrobial resistance. The emergence of multidrug-resistant (MDR) and carbapenem-resistant S. marcescens (CRSM) presents significant therapeutic challenges.
View Article and Find Full Text PDFPediatr Nephrol
September 2025
Department of Pediatric Nephrology, Emma Children's Hospital - Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
NPJ Biofilms Microbiomes
September 2025
Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel University, Kiel, Schleswig-Holstein, Germany.
Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI.
View Article and Find Full Text PDFJ Pediatr Urol
August 2025
Department of Paediatric Urology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India. Electronic address:
Introduction/aims: We hereby report a novel vesicoscopic supra trigonal ureteric reimplantation detrusorraphy (STURDY) technique for unilateral duplex systems with vesicoureteric reflux (VUR).
Methods: A 3-year-old boy and a 1-year-old girl with recurrent urinary tract infections (UTIs) and left duplex VUR/ureterocele underwent vesicoscopic STURDY.
Technique: After establishing pneumovesicum, a vertical incision was made cranially along the ureter for 2-3 cm incising both the mucosa and detrusor, preserving the vas deferens.