A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Alternate InP synthesis with aminophosphines: solution-liquid-solid nanowire growth. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Indium phosphide nanowires are important components in high-speed electronics and optoelectronics, including photodetectors and photovoltaics. However, most syntheses either use high-temperature and costly vapor-phase methodology or highly toxic and pyrophoric tris(trimethylsilyl)phosphine. To expand on the success of the aminophosphine-based InP colloidal quantum dot synthesis, we developed a synthesis for thin (∼11 nm) zinc blende InP nanowires at 180 °C using indium tris(trifluoroacetate) and tris(diethylamino)phosphine. A flat nanoribbon morphology was identified by transmission electron and atomic force microscopy analysis, with the stoichiometric (110) lattice plane exposed. Nanowire growth proceeded through a solution-liquid-solid mechanism from -formed indium metal nanoparticles. Molecular byproducts of tris(oleylamino)phosphine oxide and -oleyltrifluoroacetamide observed by P and F NMR spectroscopy inform a proposed mechanism of indium reduction by the aminophosphine. Morphological control over the nanowire product was achieved by varying the phosphorus injection to control the aspect ratio, the In : P ratio to toggle between nanowires and multipods, and the pre-hot injection evacuation step to favor a quantum dot product. Replacing the indium precursor with indium tris(trifluoromethanesulfonate) was found to make bulk zinc blende InP nanowires with an average diameter of >250 nm and tens of microns in length.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr04907aDOI Listing

Publication Analysis

Top Keywords

nanowire growth
8
quantum dot
8
zinc blende
8
blende inp
8
inp nanowires
8
indium
6
alternate inp
4
inp synthesis
4
synthesis aminophosphines
4
aminophosphines solution-liquid-solid
4

Similar Publications