98%
921
2 minutes
20
Global change is rapidly reshaping species' habitat suitability ranges, hence leading to significant shifts in the distribution of marine life. Contrasting distributional responses among species can alter the spatial overlap between predators and prey, potentially disrupting trophic interactions and affecting food web dynamics. Here, we evaluate long-term changes in the spatial overlap of habitat suitability ranges for trophically related species, including crustaceans, fish, penguins, and pinnipeds across 12 Large Marine Ecosystems from the Southern Hemisphere, merged into three primary regions: South America, Southern Africa, Australia and New Zealand. To this aim, we first use Boosted Regression Trees (BRTs) to hindcast and project species-specific changes in suitable habitat from 1850 to 2100 under two future climate scenarios: SSP1-2.6 (low climate forcing) and SSP5-8.5 (high climate forcing). We then analyze changes in species habitat suitability and potential predator-prey spatial overlaps. Findings reveal that marine species generally exhibit changes in their suitable habitats, with pronounced shifts towards higher latitudes under the SSP5-8.5 scenario. However, contrasting trends emerge among predators across functional groups and regions of South America, Southern Africa, Australia and New Zealand. These variations highlight the need for species and regional-specific management responses. We also project contrasting spatial mismatches between predators and prey: predators experiencing declines in suitable habitat tend to exhibit greater overlap with their prey in future scenarios, whereas those with expanding suitable habitat show reduced spatial overlap with their prey. This study provides valuable insights that can inform spatial management strategies in response to climate change and illustrate how climate change may weaken species' ability to adapt to climate-driven environmental changes due to trophic disruptions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.70080 | DOI Listing |
Proc Biol Sci
September 2025
Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 901 83 Umeå, Västerbotten County, Sweden.
Pharmaceutical contaminants reaching natural aquatic ecosystems can affect fish behaviour, modifying activity patterns, foraging behaviour and antipredator responses. While laboratory-based studies can offer key insights, assessing the ecological relevance of these findings requires field-based approaches. Therefore, we examined the effects of oxazepam, a widely prescribed anxiolytic drug, on the behaviour of a cyprinid fish (the common roach, ) in the wild, combining slow-release exposure implants with continuous tracking via acoustic telemetry.
View Article and Find Full Text PDFCurr Biol
September 2025
Division of Neurobiology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany. Electronic address:
Wide-field neurons in the mouse superior colliculus trigger hunting and escape behaviors based on visual cues. A new study shows that, via spatiotemporal integration of retinal inputs alone, their dendrites perform a de novo computation for prey detection.
View Article and Find Full Text PDFJ Anim Ecol
September 2025
Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic.
Research Highlight: Chen, J., Wang, M. Q.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany.
Animals can improve their decision-making abilities by integrating information from multiple senses, which is especially beneficial when living in fluctuating environments. However, understanding how wild predators may use multimodal sensing when hunting prey in split-second interactions remains largely unexplored. As nocturnal hunters, bats rely on echolocation to navigate and to locate evasive prey, yet they have retained functional vision, despite the associated costs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Australian Antarctic Division, Kingston, TAS 7050, Australia.
Antarctic krill () is the central prey species in the Southern Ocean food web, supporting the largest and fastest-growing fishery in the region, managed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Climate change is threatening krill populations and their predators, while current catch limits do not take into account climate variability or krill population dynamics. In 2024, CCAMLR was unable to renew its spatial catch limits, highlighting the urgent need for improved management of the krill fishery to prevent any harm to the Southern Ocean ecosystem.
View Article and Find Full Text PDF